756 research outputs found

    Investigating Full-Waveform Lidar Data for Detection and Recognition of Vertical Objects

    Get PDF
    A recent innovation in commercially-available topographic lidar systems is the ability to record return waveforms at high sampling frequencies. These “full-waveform” systems provide up to two orders of magnitude more data than “discrete-return” systems. However, due to the relatively limited capabilities of current processing and analysis software, more data does not always translate into more or better information for object extraction applications. In this paper, we describe a new approach for exploiting full waveform data to improve detection and recognition of vertical objects, such as trees, poles, buildings, towers, and antennas. Each waveform is first deconvolved using an expectation-maximization (EM) algorithm to obtain a train of spikes in time, where each spike corresponds to an individual laser reflection. The output is then georeferenced to create extremely dense, detailed X,Y,Z,I point clouds, where I denotes intensity. A tunable parameter is used to control the number of spikes in the deconvolved waveform, and, hence, the point density of the output point cloud. Preliminary results indicate that the average number of points on vertical objects using this method is several times higher than using discrete-return lidar data. The next steps in this ongoing research will involve voxelizing the lidar point cloud to obtain a high-resolution volume of intensity values and computing a 3D wavelet representation. The final step will entail performing vertical object detection/recognition in the wavelet domain using a multiresolution template matching approach

    Exploiting Full-Waveform Lidar Data and Multiresolution Wavelet Analysis for Vertical Object Detection and Recognition

    Get PDF
    A current challenge in performing airport obstruction surveys using airborne lidar is lack of reliable, automated methods for extracting and attributing vertical objects from the lidar data. This paper presents a new approach to solving this problem, taking advantage of the additional data provided byfull-waveform systems. The procedure entails first deconvolving and georeferencing the lidar waveformdata to create dense, detailed point clouds in which the vertical structure of objects, such as trees, towers, and buildings, is well characterized. The point clouds are then voxelized to produce high-resolution volumes of lidar intensity values, and a 3D wavelet decomposition is computed. Verticalobject detection and recognition is performed in the wavelet domain using a multiresolution template matching approach. The method was tested using lidar waveform data and ground truth collected for project areas in Madison,Wisconsin. Preliminary results demonstrate the potential of the approach

    Approximate Message Passing in Coded Aperture Snapshot Spectral Imaging

    Full text link
    We consider a compressive hyperspectral imaging reconstruction problem, where three-dimensional spatio-spectral information about a scene is sensed by a coded aperture snapshot spectral imager (CASSI). The approximate message passing (AMP) framework is utilized to reconstruct hyperspectral images from CASSI measurements, and an adaptive Wiener filter is employed as a three-dimensional image denoiser within AMP. We call our algorithm "AMP-3D-Wiener." The simulation results show that AMP-3D-Wiener outperforms existing widely-used algorithms such as gradient projection for sparse reconstruction (GPSR) and two-step iterative shrinkage/thresholding (TwIST) given the same amount of runtime. Moreover, in contrast to GPSR and TwIST, AMP-3D-Wiener need not tune any parameters, which simplifies the reconstruction process.Comment: to appear in Globalsip 201

    Flexible wavelet-neuro-fuzzy neuron in dynamic data mining tasks

    Get PDF
    Запропоновано нову гнучку модифікацію нео-фаззі нейрону та алгоритм навчання усіх параметрів. Запропонований алгоритм навчання дає змогу налаштувати не тільки синаптичні ваги, але й параметри функцій активації-приналежності та її форми, що дає змогу уникнути виникнення «дірок» у вхідному просторі. Запропонований алгоритм навчання має як фільтруючі, так і властивості слідкування, таким чином гнучкий нео-фаззі нейрон може використовуватися для вирішення задач прогнозування, фільтрації та згладжування нестаціонарних стохастичних и хаотичних послідовностей. Перевагами запропонованого підходу є простота обчислення у порівняні з відомими алгоритмами навчання гібридних вейвлет-нейро-фаззі-систем обчислювального інтелекту.Предлагается новая гибкая модификация нео-фаззи нейрона и алгоритм обучения всех его параметров. Предложенный алгоритм обучения позволяет настраивать не только синаптические веса, но и параметры функций активации-принадлежности и ее формы, что позволяет избежать возникновения «дырок» во входном пространстве. Предложенный алгоритм обучения обладает как фильтрующими, так и следящими свойствами, таким образом гибкий нео-фаззи нейрон может использоваться для решения задач прогнозирования, фильтрации и сглаживания нестационарных и хаотических последовательностей. Преимуществом предложенного подхода являются вычислительная простота в сравнении с известными алгоритмами обучения гибридных вэйвлет-нейро-фззи систем вычислительного интеллекта.A new flexible modification of neo-fuzzy neuron (FNFN) and adaptive learning algorithms for the tuning of its all parameters are proposed in the paper. The algorithms are interesting in that they provide on-line tuning of not only the synaptic weights and membership functions parameters, but also forms of these functions, that provide improving approximation properties and allow to avoid the occurrence of ”gaps” in space of inputs. The proposed algorithms have both the tracking and filtering properties, so the FNFN can be effectively used for prediction, filtering and smoothing of non-stationary stochastic and chaotic sequences. A special feature of the proposed approach is its computational simplicity in comparison with known learning procedures for hybrid wavelet-neuro-fuzzy systems of computational intelligence
    corecore