6,388 research outputs found

    Perceptually Motivated Wavelet Packet Transform for Bioacoustic Signal Enhancement

    Get PDF
    A significant and often unavoidable problem in bioacoustic signal processing is the presence of background noise due to an adverse recording environment. This paper proposes a new bioacoustic signal enhancement technique which can be used on a wide range of species. The technique is based on a perceptually scaled wavelet packet decomposition using a species-specific Greenwood scale function. Spectral estimation techniques, similar to those used for human speech enhancement, are used for estimation of clean signal wavelet coefficients under an additive noise model. The new approach is compared to several other techniques, including basic bandpass filtering as well as classical speech enhancement methods such as spectral subtraction, Wiener filtering, and Ephraim–Malah filtering. Vocalizations recorded from several species are used for evaluation, including the ortolan bunting (Emberiza hortulana), rhesus monkey (Macaca mulatta), and humpback whale (Megaptera novaeanglia), with both additive white Gaussian noise and environment recording noise added across a range of signal-to-noise ratios (SNRs). Results, measured by both SNR and segmental SNR of the enhanced wave forms, indicate that the proposed method outperforms other approaches for a wide range of noise conditions

    Wavelet Packet Transform based Speech Enhancement via Two-Dimensional SPP Estimator with Generalized Gamma Priors

    Get PDF
    Despite various speech enhancement techniques have been developed for different applications, existing methods are limited in noisy environments with high ambient noise levels. Speech presence probability (SPP) estimation is a speech enhancement technique to reduce speech distortions, especially in low signal-to-noise ratios (SNRs) scenario. In this paper, we propose a new two-dimensional (2D) Teager-energyoperators (TEOs) improved SPP estimator for speech enhancement in time-frequency (T-F) domain. Wavelet packet transform (WPT) as a multiband decomposition technique is used to concentrate the energy distribution of speech components. A minimum mean-square error (MMSE) estimator is obtained based on the generalized gamma distribution speech model in WPT domain. In addition, the speech samples corrupted by environment and occupational noises (i.e., machine shop, factory and station) at different input SNRs are used to validate the proposed algorithm. Results suggest that the proposed method achieves a significant enhancement on perceptual quality, compared with four conventional speech enhancement algorithms (i.e., MMSE-84, MMSE-04, Wiener-96, and BTW)

    Speech Enhancement with Adaptive Thresholding and Kalman Filtering

    Get PDF
    Speech enhancement has been extensively studied for many years and various speech enhance- ment methods have been developed during the past decades. One of the objectives of speech en- hancement is to provide high-quality speech communication in the presence of background noise and concurrent interference signals. In the process of speech communication, the clean speech sig- nal is inevitably corrupted by acoustic noise from the surrounding environment, transmission media, communication equipment, electrical noise, other speakers, and other sources of interference. These disturbances can significantly degrade the quality and intelligibility of the received speech signal. Therefore, it is of great interest to develop efficient speech enhancement techniques to recover the original speech from the noisy observation. In recent years, various techniques have been developed to tackle this problem, which can be classified into single channel and multi-channel enhancement approaches. Since single channel enhancement is easy to implement, it has been a significant field of research and various approaches have been developed. For example, spectral subtraction and Wiener filtering, are among the earliest single channel methods, which are based on estimation of the power spectrum of stationary noise. However, when the noise is non-stationary, or there exists music noise and ambient speech noise, the enhancement performance would degrade considerably. To overcome this disadvantage, this thesis focuses on single channel speech enhancement under adverse noise environment, especially the non-stationary noise environment. Recently, wavelet transform based methods have been widely used to reduce the undesired background noise. On the other hand, the Kalman filter (KF) methods offer competitive denoising results, especially in non-stationary environment. It has been used as a popular and powerful tool for speech enhancement during the past decades. In this regard, a single channel wavelet thresholding based Kalman filter (KF) algorithm is proposed for speech enhancement in this thesis. The wavelet packet (WP) transform is first applied to the noise corrupted speech on a frame-by-frame basis, which decomposes each frame into a number of subbands. A voice activity detector (VAD) is then designed to detect the voiced/unvoiced frames of the subband speech. Based on the VAD result, an adaptive thresholding scheme is applied to each subband speech followed by the WP based reconstruction to obtain the pre-enhanced speech. To achieve a further level of enhancement, an iterative Kalman filter (IKF) is used to process the pre-enhanced speech. The proposed adaptive thresholding iterative Kalman filtering (AT-IKF) method is evaluated and compared with some existing methods under various noise conditions in terms of segmental SNR and perceptual evaluation of speech quality (PESQ) as two well-known performance indexes. Firstly, we compare the proposed adaptive thresholding (AT) scheme with three other threshold- ing schemes: the non-linear universal thresholding (U-T), the non-linear wavelet packet transform thresholding (WPT-T) and the non-linear SURE thresholding (SURE-T). The experimental results show that the proposed AT scheme can significantly improve the segmental SNR and PESQ for all input SNRs compared with the other existing thresholding schemes. Secondly, extensive computer simulations are conducted to evaluate the proposed AT-IKF as opposed to the AT and the IKF as standalone speech enhancement methods. It is shown that the AT-IKF method still performs the best. Lastly, the proposed ATIKF method is compared with three representative and popular meth- ods: the improved spectral subtraction based speech enhancement algorithm (ISS), the improved Wiener filter based method (IWF) and the representative subband Kalman filter based algorithm (SIKF). Experimental results demonstrate the effectiveness of the proposed method as compared to some previous works both in terms of segmental SNR and PESQ

    Rehaussement du signal de parole par EMD et opérateur de Teager-Kaiser

    Get PDF
    The authors would like to thank Professor Mohamed Bahoura from Universite de Quebec a Rimouski for fruitful discussions on time adaptive thresholdingIn this paper a speech denoising strategy based on time adaptive thresholding of intrinsic modes functions (IMFs) of the signal, extracted by empirical mode decomposition (EMD), is introduced. The denoised signal is reconstructed by the superposition of its adaptive thresholded IMFs. Adaptive thresholds are estimated using the Teager–Kaiser energy operator (TKEO) of signal IMFs. More precisely, TKEO identifies the type of frame by expanding differences between speech and non-speech frames in each IMF. Based on the EMD, the proposed speech denoising scheme is a fully data-driven approach. The method is tested on speech signals with different noise levels and the results are compared to EMD-shrinkage and wavelet transform (WT) coupled with TKEO. Speech enhancement performance is evaluated using output signal to noise ratio (SNR) and perceptual evaluation of speech quality (PESQ) measure. Based on the analyzed speech signals, the proposed enhancement scheme performs better than WT-TKEO and EMD-shrinkage approaches in terms of output SNR and PESQ. The noise is greatly reduced using time-adaptive thresholding than universal thresholding. The study is limited to signals corrupted by additive white Gaussian noise

    Studies in Signal Processing Techniques for Speech Enhancement: A comparative study

    Get PDF
    Speech enhancement is very essential to suppress the background noise and to increase speech intelligibility and reduce fatigue in hearing. There exist many simple speech enhancement algorithms like spectral subtraction to complex algorithms like Bayesian Magnitude estimators based on Minimum Mean Square Error (MMSE) and its variants. A continuous research is going and new algorithms are emerging to enhance speech signal recorded in the background of environment such as industries, vehicles and aircraft cockpit. In aviation industries speech enhancement plays a vital role to bring crucial information from pilot’s conversation in case of an incident or accident by suppressing engine and other cockpit instrument noises. In this work proposed is a new approach to speech enhancement making use harmonic wavelet transform and Bayesian estimators. The performance indicators, SNR and listening confirms to the fact that newly modified algorithms using harmonic wavelet transform indeed show better results than currently existing methods. Further, the Harmonic Wavelet Transform is computationally efficient and simple to implement due to its inbuilt decimation-interpolation operations compared to those of filter-bank approach to realize sub-bands

    EMD-based filtering (EMDF) of low-frequency noise for speech enhancement

    Get PDF
    An Empirical Mode Decomposition based filtering (EMDF) approach is presented as a post-processing stage for speech enhancement. This method is particularly effective in low frequency noise environments. Unlike previous EMD based denoising methods, this approach does not make the assumption that the contaminating noise signal is fractional Gaussian Noise. An adaptive method is developed to select the IMF index for separating the noise components from the speech based on the second-order IMF statistics. The low frequency noise components are then separated by a partial reconstruction from the IMFs. It is shown that the proposed EMDF technique is able to suppress residual noise from speech signals that were enhanced by the conventional optimallymodified log-spectral amplitude approach which uses a minimum statistics based noise estimate. A comparative performance study is included that demonstrates the effectiveness of the EMDF system in various noise environments, such as car interior noise, military vehicle noise and babble noise. In particular, improvements up to 10 dB are obtained in car noise environments. Listening tests were performed that confirm the results

    Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization

    Full text link
    Convex optimization with sparsity-promoting convex regularization is a standard approach for estimating sparse signals in noise. In order to promote sparsity more strongly than convex regularization, it is also standard practice to employ non-convex optimization. In this paper, we take a third approach. We utilize a non-convex regularization term chosen such that the total cost function (consisting of data consistency and regularization terms) is convex. Therefore, sparsity is more strongly promoted than in the standard convex formulation, but without sacrificing the attractive aspects of convex optimization (unique minimum, robust algorithms, etc.). We use this idea to improve the recently developed 'overlapping group shrinkage' (OGS) algorithm for the denoising of group-sparse signals. The algorithm is applied to the problem of speech enhancement with favorable results in terms of both SNR and perceptual quality.Comment: 14 pages, 11 figure
    corecore