127 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Quantization Watermarking for Joint Compression and Data Hiding Schemes

    Get PDF
    International audienceEnrichment and protection of JPEG2000 images is an important issue. Data hiding techniques are a good solution to solve these problems. In this context, we can consider the joint approach to introduce data hiding technique into JPEG2000 coding pipeline. Data hiding consists of imperceptibly altering multimedia content, to convey some information. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. In addition to the imperceptibility and payload constraints, the watermark should be robust against a variety of manipulations or attacks. We focus on trellis coded quantization (TCQ) data hiding techniques and propose two JPEG2000 compression and data hiding schemes. The properties of TCQ quantization, defined in JPEG2000 part 2, are used to perform quantization and information embedding during the same time. The first scheme is designed for content description and management applications with the objective of achieving high payloads. The compression rate/imperceptibility/payload trade off is our main concern. The second joint scheme has been developed for robust watermarking and can have consequently many applications. We achieve the better imperceptibility/robustness trade off in the context of JPEG2000 compression. We provide some experimental results on the implementation of these two schemes

    A Study of trellis coded quantization for image compression

    Get PDF
    Trellis coded quantization has recently evolved as a powerful quantization technique in the world of lossy image compression. The aim of this thesis is to investigate the potential of trellis coded quantization in conjunction with two of the most popular image transforms today; the discrete cosine transform and the discrete wavelet trans form. Trellis coded quantization is compared with traditional scalar quantization. The 4-state and the 8-state trellis coded quantizers are compared in an attempt to come up with a quantifiable difference in their performances. The use of pdf-optimized quantizers for trellis coded quantization is also studied. Results for the simulations performed on two gray-scale images at an uncoded bit rate of 0.48 bits/pixel are presented by way of reconstructed images and the respective peak signal-to-noise ratios. It is evident from the results obtained that trellis coded quantization outperforms scalar quantization in both the discrete cosine transform and the discrete wavelet transform domains. The reconstructed images suggest that there does not seem to be any considerable gain in going from a 4-state to a 8-state trellis coded quantizer. Results also suggest that considerable gain can be had by employing pdf-optimized quantizers for trellis coded quantization instead of uniform quantizers

    Optimal soft-decoding combined trellis-coded quantization/modulation.

    Get PDF
    Chei Kwok-hung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 66-73).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Typical Digital Communication Systems --- p.2Chapter 1.1.1 --- Source coding --- p.3Chapter 1.1.2 --- Channel coding --- p.5Chapter 1.2 --- Joint Source-Channel Coding System --- p.5Chapter 1.3 --- Thesis Organization --- p.7Chapter Chapter 2 --- Trellis Coding --- p.9Chapter 2.1 --- Convolutional Codes --- p.9Chapter 2.2 --- Trellis-Coded Modulation --- p.12Chapter 2.2.1 --- Set Partitioning --- p.13Chapter 2.3 --- Trellis-Coded Quantization --- p.14Chapter 2.4 --- Joint TCQ/TCM System --- p.17Chapter 2.4.1 --- The Combined Receiver --- p.17Chapter 2.4.2 --- Viterbi Decoding --- p.19Chapter 2.4.3 --- Sequence MAP Decoding --- p.20Chapter 2.4.4 --- Sliding Window Decoding --- p.21Chapter 2.4.5 --- Block-Based Decoding --- p.23Chapter Chapter 3 --- Soft Decoding Joint TCQ/TCM over AWGN Channel --- p.25Chapter 3.1 --- System Model --- p.26Chapter 3.2 --- TCQ with Optimal Soft-Decoder --- p.27Chapter 3.3 --- Gaussian Memoryless Source --- p.30Chapter 3.3.1 --- Theorem Limit --- p.31Chapter 3.3.2 --- Performance on PAM Constellations --- p.32Chapter 3.3.3 --- Performance on PSK Constellations --- p.36Chapter 3.4 --- Uniform Memoryless Source --- p.38Chapter 3.4.1 --- Theorem Limit --- p.38Chapter 3.4.2 --- Performance on PAM Constellations --- p.39Chapter 3.4.3 --- Performance on PSK Constellations --- p.40Chapter Chapter 4 --- Soft Decoding Joint TCQ/TCM System over Rayleigh Fading Channel --- p.42Chapter 4.1 --- Wireless Channel --- p.43Chapter 4.2 --- Rayleigh Fading Channel --- p.44Chapter 4.3 --- Idea Interleaving --- p.45Chapter 4.4 --- Receiver Structure --- p.46Chapter 4.5 --- Numerical Results --- p.47Chapter 4.5.1 --- Performance on 4-PAM Constellations --- p.48Chapter 4.5.2 --- Performance on 8-PAM Constellations --- p.50Chapter 4.5.3 --- Performance on 16-PAM Constellations --- p.52Chapter Chapter 5 --- Joint TCVQ/TCM System --- p.54Chapter 5.1 --- Trellis-Coded Vector Quantization --- p.55Chapter 5.1.1 --- Set Partitioning in TCVQ --- p.56Chapter 5.2 --- Joint TCVQ/TCM --- p.59Chapter 5.2.1 --- Set Partitioning and Index Assignments --- p.60Chapter 5.2.2 --- Gaussian-Markov Sources --- p.61Chapter 5.3 --- Simulation Results and Discussion --- p.62Chapter Chapter 6 --- Conclusion and Future Work --- p.64Chapter 6.1 --- Conclusion --- p.64Chapter 6.2 --- Future Works --- p.65Bibliography --- p.66Appendix-Publications --- p.7

    Trellis-coded quantization with unequal distortion.

    Get PDF
    Kwong Cheuk Fai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 72-74).Abstracts in English and Chinese.Acknowledgements --- p.iAbstract --- p.iiTable of Contents --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Quantization --- p.2Chapter 1.2 --- Trellis-Coded Quantization --- p.3Chapter 1.3 --- Thesis Organization --- p.4Chapter 2 --- Trellis-Coded Modulation --- p.6Chapter 2.1 --- Convolutional Codes --- p.7Chapter 2.1.1 --- Generator Polynomials and Generator Matrix --- p.9Chapter 2.1.2 --- Circuit Diagram --- p.10Chapter 2.1.3 --- State Transition Diagram --- p.11Chapter 2.1.4 --- Trellis Diagram --- p.12Chapter 2.2 --- Trellis-Coded Modulation --- p.13Chapter 2.2.1 --- Uncoded Transmission verses TCM --- p.14Chapter 2.2.2 --- Trellis Representation --- p.17Chapter 2.2.3 --- Ungerboeck Codes --- p.18Chapter 2.2.4 --- Set Partitioning --- p.19Chapter 2.2.5 --- Decoding for TCM --- p.22Chapter 3 --- Trellis-Coded Quantization --- p.26Chapter 3.1 --- Scalar Trellis-Coded Quantization --- p.26Chapter 3.2 --- Trellis-Coded Vector Quantization --- p.31Chapter 3.2.1 --- Set Partitioning in TCVQ --- p.33Chapter 3.2.2 --- Codebook Optimization --- p.34Chapter 3.2.3 --- Numerical Data and Discussions --- p.35Chapter 4 --- Trellis-Coded Quantization with Unequal Distortion --- p.38Chapter 4.1 --- Design Procedures --- p.40Chapter 4.2 --- Fine and Coarse Codebooks --- p.41Chapter 4.3 --- Set Partitioning --- p.44Chapter 4.4 --- Codebook Optimization --- p.45Chapter 4.5 --- Decoding for Unequal Distortion TCVQ --- p.46Chapter 5 --- Unequal Distortion TCVQ on Memoryless Gaussian Source --- p.47Chapter 5.1 --- Memoryless Gaussian Source --- p.49Chapter 5.2 --- Set Partitioning of Codewords of Memoryless Gaussian Source --- p.49Chapter 5.3 --- Numerical Results and Discussions --- p.51Chapter 6 --- Unequal Distortion TCVQ on Markov Gaussian Source --- p.57Chapter 6.1 --- Markov Gaussian Source --- p.57Chapter 6.2 --- Set Partitioning of Codewords of Markov Gaussian Source --- p.58Chapter 6.3 --- Numerical Results and Discussions --- p.59Chapter 7 --- Conclusions --- p.70Bibliography --- p.7
    • …
    corecore