1,101 research outputs found

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Exploring Two Novel Features for EEG-based Brain-Computer Interfaces: Multifractal Cumulants and Predictive Complexity

    Get PDF
    In this paper, we introduce two new features for the design of electroencephalography (EEG) based Brain-Computer Interfaces (BCI): one feature based on multifractal cumulants, and one feature based on the predictive complexity of the EEG time series. The multifractal cumulants feature measures the signal regularity, while the predictive complexity measures the difficulty to predict the future of the signal based on its past, hence a degree of how complex it is. We have conducted an evaluation of the performance of these two novel features on EEG data corresponding to motor-imagery. We also compared them to the most successful features used in the BCI field, namely the Band-Power features. We evaluated these three kinds of features and their combinations on EEG signals from 13 subjects. Results obtained show that our novel features can lead to BCI designs with improved classification performance, notably when using and combining the three kinds of feature (band-power, multifractal cumulants, predictive complexity) together.Comment: Updated with more subjects. Separated out the band-power comparisons in a companion article after reviewer feedback. Source code and companion article are available at http://nicolas.brodu.numerimoire.net/en/recherche/publication

    Classification of time series patterns from complex dynamic systems

    Full text link

    Handwriting-Based Gender Classification Using End-to-End Deep Neural Networks

    Full text link
    Handwriting-based gender classification is a well-researched problem that has been approached mainly by traditional machine learning techniques. In this paper, we propose a novel deep learning-based approach for this task. Specifically, we present a convolutional neural network (CNN), which performs automatic feature extraction from a given handwritten image, followed by classification of the writer's gender. Also, we introduce a new dataset of labeled handwritten samples, in Hebrew and English, of 405 participants. Comparing the gender classification accuracy on this dataset against human examiners, our results show that the proposed deep learning-based approach is substantially more accurate than that of humans

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    A data mining approach to ontology learning for automatic content-related question-answering in MOOCs.

    Get PDF
    The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the question answering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbook end of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexing approaches are: unigram-based, concept-based and hierarchical concept indexing. The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and random forests classifiers achieved the best result among the tested classifiers
    • …
    corecore