997 research outputs found

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    Wavelet q-Fisher Information for Scaling Signal Analysis

    Get PDF
    This article first introduces the concept of wavelet q-Fisher information and then derives a closed-form expression of this quantifier for scaling signals of parameter α. It is shown that this information measure appropriately describes the complexities of scaling signals and provides further analysis flexibility with the parameter q. In the limit of q→1, wavelet q-Fisher information reduces to the standard wavelet Fisher information and for q > 2 it reverses its behavior. Experimental results on synthesized fGn signals validates the level-shift detection capabilities of wavelet q-Fisher information. A comparative study also shows that wavelet q-Fisher information locates structural changes in correlated and anti-correlated fGn signals in a way comparable with standard breakpoint location techniques but at a fraction of the time. Finally, the application of this quantifier to H.263 encoded video signals is presented.Consejo Nacional de Ciencia y TecnologíaFOMIX-COQCY

    Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel

    Get PDF
    The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB) channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband) model presented here (especially in the case of multiband UWB frequency synchronization) is more accurate than using frequency offset estimate obtained from narrowband models

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Phonocardiogram-based diagnosis using machine learning : parametric estimation with multivariant classification

    Get PDF
    The heart sound signal, Phonocardiogram (PCG) is difficult to interpret even for experienced cardiologists. Interpretation are very subjective depending on the hearing ability of the physician. mHealth has been the adopted approach towards quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this paper is to diagnose the heart condition based on Phonocardiogram analysis using Machine Learning techniques assuming limited processing power to be encapsulated later in a mobile device. The cardiovascular system is modelled in a transfer function to provide PCG signal recording as it would be recorded at the wrist. The signal is, then, decomposed using filter bank and the analysed using discriminant function. The results showed that PCG with a 19 dB Signal-to-Noise-Ratio can lead to 97.33% successful diagnosis.fi=vertaisarvioitu|en=peerReviewed

    Energy Minimization of Portable Video Communication Devices Based on Power-Rate-Distortion Optimization

    Get PDF
    Digital Object Identifier 10.1109/TCSVT.2008.918802Portable video communication devices operate on batteries with limited energy supply. However, video compression is computationally intensive and energy-demanding. Therefore, one of the central challenging issues in portable video communication system design is to minimize the energy consumption of video encoding so as to prolong the operational lifetime of portable video devices. In this work, based on power-rate-distortion (P-R-D) optimization, we develop a new approach for energy minimization by exploring the energy tradeoff between video encoding and wireless communication and exploiting the nonstationary characteristics of input video data. Both analytically and experimentally, we demonstrate that incorporating the third dimension of power consumption into conventional R-D analysis gives us one extra dimension of flexibility in resource allocation and allows us to achieve significant energy saving. Within the P-R-D analysis framework, power is tightly coupled with rate, enabling us to trade bits for joules and perform energy minimization through optimum bit allocation. Our experimental studies show that, for typical videos with nonstationary scene statistics, using the proposed P-R-D optimization technology, the energy consumption of video encoding can be significantly reduced (by up to 50%), especially in delay-tolerant portable video communication applications

    Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor

    Get PDF
    In the past period, great efforts have been made to develop methods for through an obstacle detection of human vital signs such as breathing or heart beating. For that purpose, ultra-wideband (UWB) radars operating in the frequency band DC-5 GHz can be used as a proper tool. The basic principle of respiratory motion detection consists in the identification of radar signal components possessing a significant power in the frequency band 0.2–0.7 Hz (frequency band of human respiratory rate) corresponding to a constant bistatic range between the target and radar. To tackle the task of detecting respiratory motion, a variety of methods have been developed. However, the problem of person localization based on his or her respiratory motion detection has not been studied deeply. In order to fill this gap, an approach for multiple person localization based on the detection of their respiratory motion will be introduced in this chapter
    • …
    corecore