2,039 research outputs found

    Contrast Enhanced Low-light Visible and Infrared Image Fusion

    Get PDF
    Multi-modal image fusion objective is to combine complementary information obtained from multiple modalities into a single representation with increased reliability and interpretation. The images obtained from low-light visible cameras containing fine details of the scene and infrared cameras with high contrast details are the two modalities considered for fusion. In this paper, the low-light images with low target contrast are enhanced by using the phenomenon of stochastic resonance prior to fusion. Entropy is used as a measure to tune iteratively the coefficients using bistable system parameters. The combined advantage of multi scale decomposition approach and principal component analysis is utilized for the fusion of enhanced low-light visible and infrared images. Experimental results were carried out on different image datasets and analysis of the proposed methods were discussed.

    An efficient hybrid approach for medical images enhancement

    Get PDF
    Medical images have various critical usages in the field of medical science and healthcare engineering. These images contain information about many severe diseases. Health professionals identify various diseases by observing the medical images. Quality of medical images directly affects the accuracy of detection and diagnosis of various diseases. Therefore, quality of images must be as good as possible. Different approaches are existing today for enhancement of medical images, but quality of images is not good. In this literature, we have proposed a novel approach that uses principal component analysis (PCA), multi-scale switching morphological operator (MSMO) and contrast limited adaptive histogram equalization (CLAHE) methods in a unique sequence for this purpose. We have conducted exhaustive experiments on large number of images of various modalities such as MRI, ultrasound, and retina. Obtained results demonstrate that quality of medical images processed by proposed approach has significantly improved and better than other existing methods of this field

    Noise-Enhanced and Human Visual System-Driven Image Processing: Algorithms and Performance Limits

    Get PDF
    This dissertation investigates the problem of image processing based on stochastic resonance (SR) noise and human visual system (HVS) properties, where several novel frameworks and algorithms for object detection in images, image enhancement and image segmentation as well as the method to estimate the performance limit of image segmentation algorithms are developed. Object detection in images is a fundamental problem whose goal is to make a decision if the object of interest is present or absent in a given image. We develop a framework and algorithm to enhance the detection performance of suboptimal detectors using SR noise, where we add a suitable dose of noise into the original image data and obtain the performance improvement. Micro-calcification detection is employed in this dissertation as an illustrative example. The comparative experiments with a large number of images verify the efficiency of the presented approach. Image enhancement plays an important role and is widely used in various vision tasks. We develop two image enhancement approaches. One is based on SR noise, HVS-driven image quality evaluation metrics and the constrained multi-objective optimization (MOO) technique, which aims at refining the existing suboptimal image enhancement methods. Another is based on the selective enhancement framework, under which we develop several image enhancement algorithms. The two approaches are applied to many low quality images, and they outperform many existing enhancement algorithms. Image segmentation is critical to image analysis. We present two segmentation algorithms driven by HVS properties, where we incorporate the human visual perception factors into the segmentation procedure and encode the prior expectation on the segmentation results into the objective functions through Markov random fields (MRF). Our experimental results show that the presented algorithms achieve higher segmentation accuracy than many representative segmentation and clustering algorithms available in the literature. Performance limit, or performance bound, is very useful to evaluate different image segmentation algorithms and to analyze the segmentability of the given image content. We formulate image segmentation as a parameter estimation problem and derive a lower bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels considered in our work, using a modified Cramér-Rao bound (CRB). The derivation is based on the biased estimator assumption, whose reasonability is verified in this dissertation. Experimental results demonstrate the validity of the derived bound

    Enhancement of Gray Color Image using Limited Histogram Equalization Technique

    Get PDF
    Image enhancement plays asignificant role in multimedia and image processing applications. Many images writhe from poor dissimilarity and noise due to the insufficient lighting during image obtaining. So it is required to enhance the contrast of image as well as remove the noise that reductions image quality. The objective of enhancement is to improve the fundamental appearance of an image without any degradation in the input image. The main goal of this paper is to give a simple implementation of histogram equalization algorithm of a color image in efficient manner

    Gaussian mixture model-based contrast enhancement

    Get PDF
    In this study, a method for enhancing low-contrast images is proposed. This method, called Gaussian mixture model-based contrast enhancement (GMMCE), brings into play the Gaussian mixture modelling of histograms to model the content of the images. On the basis of the fact that each homogeneous area in natural images has a Gaussian-shaped histogram, it decomposes the narrow histogram of low-contrast images into a set of scaled and shifted Gaussians. The individual histograms are then stretched by increasing their variance parameters, and are diffused on the entire histogram by scattering their mean parameters, to build a broad version of the histogram. The number of Gaussians as well as their parameters are optimised to set up a Gaussian mixture modelling with lowest approximation error and highest similarity to the original histogram. Compared with the existing histogram-based methods, the experimental results show that the quality of GMMCE enhanced pictures are mostly consistent and outperform other benchmark methods. Additionally, the computational complexity analysis shows that GMMCE is a low-complexity method

    Advanced Brain Tumour Segmentation from MRI Images

    Get PDF
    Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of various tissue abnormalities, detection of tumors. The active development in the computerized medical image segmentation has played a vital role in scientific research. This helps the doctors to take necessary treatment in an easy manner with fast decision making. Brain tumor segmentation is a hot point in the research field of Information technology with biomedical engineering. The brain tumor segmentation is motivated by assessing tumor growth, treatment responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth models. Therefore, computer-aided diagnostic system is meaningful in medical treatments to reducing the workload of doctors and giving the accurate results. This chapter explains the causes, awareness of brain tumor segmentation and its classification, MRI scanning process and its operation, brain tumor classifications, and different segmentation methodologies

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image
    corecore