207 research outputs found

    Improving the performance of translation wavelet transform using BMICA

    Get PDF
    Research has shown Wavelet Transform to be one of the best methods for denoising biosignals. Translation-Invariant form of this method has been found to be the best performance. In this paper however we utilize this method and merger with our newly created Independent Component Analysis method – BMICA. Different EEG signals are used to verify the method within the MATLAB environment. Results are then compared with those of the actual Translation-Invariant algorithm and evaluated using the performance measures Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Signal to Distortion Ratio (SDR), and Signal to Interference Ratio (SIR). Experiments revealed that the BMICA Translation-Invariant Wavelet Transform out performed in all four measures. This indicates that it performed superior to the basic Translation- Invariant Wavelet Transform algorithm producing cleaner EEG signals which can influence diagnosis as well as clinical studies of the brain

    Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Get PDF
    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems

    Detection and removal of eyeblink artifacts from EEG using wavelet analysis and independent component analysis

    Get PDF
    Electrical signals generated by brain activity that are measured by the electroencephalogram can be distorted by electrical activity originating from eyeblinks and eye movements. This thesis proposes a new technique to identify and remove eyeblink artifacts from EEG data. An algorithm using a combination of wavelet analysis and independent component analysis (ICA) is implemented to detect the temporal location of the eyeblink artifact and eliminate it without compromising the integrity of the primary EEG data. The discrete wavelet transform is performed on 10 second epochs of data to detect the occurrence of ocular artifact. ICA is used to separate out the independent components within the data and the temporal locations of the eyeblink are used to remove the artifact and reconstruct the EEG data without that source of distortion. The results obtained indicate that the technique implemented may be robust enough to effectively process EEG data and is capable of removing eyeblink artifacts successfully when they are prominent and the data does not contain a great deal of movement artifact. The results show an 88.68% detection rate, a false positive rate of 4.03%, and an 87.23% removal rate for all eyeblinks that were accurately detected. The statistics obtained compared favorably with work done by others in this field of investigation

    Electroencephalographic Signal Processing and Classification Techniques for Noninvasive Motor Imagery Based Brain Computer Interface

    Get PDF
    In motor imagery (MI) based brain-computer interface (BCI), success depends on reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of features and effective classification of MI activity as well as translation to the corresponding intended actions. In this study, signal processing and classification techniques are presented for electroencephalogram (EEG) signals for motor imagery based brain-computer interface. EEG signals have been acquired placing the electrodes following the international 10-20 system. The acquired signals have been pre-processed removing artifacts using empirical mode decomposition (EMD) and two extended versions of EMD, ensemble empirical mode decomposition (EEMD), and multivariate empirical mode decomposition (MEMD) leading to better signal to noise ratio (SNR) and reduced mean square error (MSE) compared to independent component analysis (ICA). EEG signals have been decomposed into independent mode function (IMFs) that are further processed to extract features like sample entropy (SampEn) and band power (BP). The extracted features have been used in support vector machines to characterize and identify MI activities. EMD and its variants, EEMD, MEMD have been compared with common spatial pattern (CSP) for different MI activities. SNR values from EMD, EEMD and MEMD (4.3, 7.64, 10.62) are much better than ICA (2.1) but accuracy of MI activity identification is slightly better for ICA than EMD using BP and SampEn. Further work is outlined to include more features with larger database for better classification accuracy

    High-performance Diagnosis of Sleep Disorders: A Novel, Accurate and Fast Machine Learning Approach Using Electroencephalographic Data

    Get PDF
    While diagnosing sleep disorders by physicians using electroencephalographic data is protracted and inaccurate, we report promising results from a novel, fast and reliable machine learning approach. Our approach only needs an electroencephalographic recording snippet of 10 minutes instead of eight hours to correctly classify the disorder with an accuracy of over 90 percent. The Rapid Eye Movement sleep behavior disorder can lead to secondary diseases like Parkinson or Dementia. Therefore, it is important to classify the disorder fast and with a high level of accuracy - which is now possible with our approach

    A Comparative Analysis of EEG-based Stress Detection Utilizing Machine Learning and Deep Learning Classifiers with a Critical Literature Review

    Get PDF
    Background: Mental stress is considered to be a major contributor to different psychological and physical diseases. Different socio-economic issues, competition in the workplace and amongst the students, and a high level of expectations are the major causes of stress. This in turn transforms into several diseases and may extend to dangerous stages if not treated properly and timely, causing the situations such as depression, heart attack, and suicide. This stress is considered to be a very serious health abnormality. Stress is to be recognized and managed before it ruins the health of a person. This has motivated the researchers to explore the techniques for stress detection. Advanced machine learning and deep learning techniques are to be investigated for stress detection.  Methodology: A survey of different techniques used for stress detection is done here. Different stages of detection including pre-processing, feature extraction, and classification are explored and critically reviewed. Electroencephalogram (EEG) is the main parameter considered in this study for stress detection. After reviewing the state-of-the-art methods for stress detection, a typical methodology is implemented, where feature extraction is done by using principal component analysis (PCA), ICA, and discrete cosine transform. After the feature extraction, some state-of-art machine learning classifiers are employed for classification including support vector machine (SVM), K-nearest neighbor (KNN), NB, and CT. In addition to these classifiers, a typical deep-learning classifier is also utilized for detection purposes. The dataset used for the study is the Database for Emotion Analysis using Physiological Signals (DEAP) dataset. Results: Different performance measures are considered including precision, recall, F1-score, and accuracy. PCA with KNN, CT, SVM and NB have given accuracies of 65.7534%, 58.9041%, 61.6438%, and 57.5342% respectively. With ICA as feature extractor accuracies obtained are 58.9041%, 61.64384%, 57.5342%, and 54.79452% for the classifiers KNN, CT, SVM, and NB respectively. DCT is also considered a feature extractor with classical machine learning algorithms giving the accuracies of 56.16438%, 50.6849%, 54.7945%, and 45.2055% for the classifiers KNN, CT, SVM, and NB respectively. A conventional DCNN classification is performed given an accuracy of 76% and precision, recall, and F1-score of 0.66, 0.77, and 0.64 respectively. Conclusion: For EEG-based stress detection, different state-of-the-art machine learning and deep learning methods are used along with different feature extractors such as PCA, ICA, and DCT. Results show that the deep learning classifier gives an overall accuracy of 76%, which is a significant improvement over classical machine learning techniques with the accuracies as PCA+ KNN (65.75%), DCT+KNN (56.16%), and ICA+CT (61.64%)
    • 

    corecore