414 research outputs found

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients

    Get PDF
    Elliptic partial differential equations with diffusion coefficients of lognormal form, that is a=exp(b)a=exp(b), where bb is a Gaussian random field, are considered. We study the â„“p\ell^p summability properties of the Hermite polynomial expansion of the solution in terms of the countably many scalar parameters appearing in a given representation of bb. These summability results have direct consequences on the approximation rates of best nn-term truncated Hermite expansions. Our results significantly improve on the state of the art estimates available for this problem. In particular, they take into account the support properties of the basis functions involved in the representation of bb, in addition to the size of these functions. One interesting conclusion from our analysis is that in certain relevant cases, the Karhunen-Lo\`eve representation of bb may not be the best choice concerning the resulting sparsity and approximability of the Hermite expansion

    Adaptive Galerkin approximation algorithms for partial differential equations in infinite dimensions

    Get PDF
    Space-time variational formulations of infinite-dimensional Fokker-Planck (FP) and Ornstein-Uhlenbeck (OU) equations for functions on a separable Hilbert space HH are developed. The well-posedness of these equations in the Hilbert space L2(H,ÎĽ)L^{2}(H,\mu) of functions on HH, which are square-integrable with respect to a Gaussian measure ÎĽ\mu on HH, is proved. Specifically, for the infinite-dimensional FP equation, adaptive space-time Galerkin discretizations, based on a tensorized Riesz basis, built from biorthogonal piecewise polynomial wavelet bases in time and the Hermite polynomial chaos in the Wiener-ItĂ´ decomposition of L2(H,ÎĽ)L^{2}(H,\mu), are introduced and are shown to converge quasioptimally with respect to the nonlinear, best NN-term approximation benchmark. As a consequence, the proposed adaptive Galerkin solution algorithms perform quasioptimally with respect to the best NN-term approximation in the finite-dimensional case, in particular. All constants in our error and complexity bounds are shown to be independent of the number of "active" coordinates identified by the proposed adaptive Galerkin approximation algorithms

    A Flexible Galerkin Scheme for Option Pricing in LĂ©vy Models

    Get PDF

    Numerical Methods for the Chemical Master Equation

    Get PDF
    The dynamics of biochemical networks can be described by a Markov jump process on a high-dimensional state space, with the corresponding probability distribution being the solution of the Chemical Master Equation (CME). In this thesis, adaptive wavelet methods for the time-dependent and stationary CME, as well as for the approximation of committor probabilities are devised. The methods are illustrated on multi-dimensional models with metastable solutions and large state spaces

    Multiscale theory of turbulence in wavelet representation

    Full text link
    We present a multiscale description of hydrodynamic turbulence in incompressible fluid based on a continuous wavelet transform (CWT) and a stochastic hydrodynamics formalism. Defining the stirring random force by the correlation function of its wavelet components, we achieve the cancellation of loop divergences in the stochastic perturbation expansion. An extra contribution to the energy transfer from large to smaller scales is considered. It is shown that the Kolmogorov hypotheses are naturally reformulated in multiscale formalism. The multiscale perturbation theory and statistical closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure

    Finite element approximation of high-dimensional transport-dominated diffusion problems

    Get PDF
    High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate partial differential equations.\ud \ud (Presented as an invited lecture under the title "Computational multiscale modelling: Fokker-Planck equations and their numerical analysis" at the Foundations of Computational Mathematics conference in Santander, Spain, 30 June - 9 July, 2005.

    Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients

    Get PDF
    We consider elliptic partial differential equations with diffusion coefficients that depend affinely on countably many parameters. We study the summability properties of polynomial expansions of the function mapping parameter values to solutions of the PDE, considering both Taylor and Legendre series. Our results considerably improve on previously known estimates of this type, in particular taking into account structural features of the affine parametrization of the coefficient. Moreover, the results carry over to more general Jacobi polynomial expansions. We demonstrate that the new bounds are sharp in certain model cases and we illustrate them by numerical experiments
    • …
    corecore