510 research outputs found

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    3D Wavelet Transformation for Visual Data Coding With Spatio and Temporal Scalability as Quality Artifacts: Current State Of The Art

    Get PDF
    Several techniques based on the three–dimensional (3-D) discrete cosine transform (DCT) have been proposed for visual data coding. These techniques fail to provide coding coupled with quality and resolution scalability, which is a significant drawback for contextual domains, such decease diagnosis, satellite image analysis. This paper gives an overview of several state-of-the-art 3-D wavelet coders that do meet these requirements and mainly investigates various types of compression techniques those exists, and putting it all together for a conclusion on further research scope

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    Surveillance centric coding

    Get PDF
    PhDThe research work presented in this thesis focuses on the development of techniques specific to surveillance videos for efficient video compression with higher processing speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher compression efficiency. The framework of SVC is modified to support Surveillance Centric Coding (SCC). Motion estimation techniques specific to surveillance videos are proposed in order to speed up the compression process of the SCC. The main contributions of the research work presented in this thesis are divided into two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims to achieve bit-rate optimisation and adaptation of surveillance videos for storing and transmission purposes. In the proposed approach the SCC encoder communicates with the Video Content Analysis (VCA) module that detects events of interest in video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by exploiting the scalability properties of the employed codec. Time segments containing events relevant to surveillance application are encoded using high spatiotemporal resolution and quality while the irrelevant portions from the surveillance standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is possible; for instance for the transmission purposes. Experimental evaluation showed that significant reduction in bit-rate can be achieved by the proposed approach without loss of information relevant to surveillance applications. In addition to more optimal compression strategy, novel approaches to performing efficient motion estimation specific to surveillance videos are proposed and implemented with experimental results. A real-time background subtractor is used to detect the presence of any motion activity in the sequence. Different approaches for selective motion estimation, GOP based, Frame based and Block based, are implemented. In the former, motion estimation is performed for the whole group of pictures (GOP) only when a moving object is detected for any frame of the GOP. iii While for the Frame based approach; each frame is tested for the motion activity and consequently for selective motion estimation. The selective motion estimation approach is further explored at a lower level as Block based selective motion estimation. Experimental evaluation showed that significant reduction in computational complexity can be achieved by applying the proposed strategy. In addition to selective motion estimation, a tracker based motion estimation and fast full search using multiple reference frames has been proposed for the surveillance videos. Extensive testing on different surveillance videos shows benefits of application of proposed approaches to achieve the goals of the SCC

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A DWT based perceptual video coding framework: concepts, issues and techniques

    Get PDF
    The work in this thesis explore the DWT based video coding by the introduction of a novel DWT (Discrete Wavelet Transform) / MC (Motion Compensation) / DPCM (Differential Pulse Code Modulation) video coding framework, which adopts the EBCOT as the coding engine for both the intra- and the inter-frame coder. The adaptive switching mechanism between the frame/field coding modes is investigated for this coding framework. The Low-Band-Shift (LBS) is employed for the MC in the DWT domain. The LBS based MC is proven to provide consistent improvement on the Peak Signal-to-Noise Ratio (PSNR) of the coded video over the simple Wavelet Tree (WT) based MC. The Adaptive Arithmetic Coding (AAC) is adopted to code the motion information. The context set of the Adaptive Binary Arithmetic Coding (ABAC) for the inter-frame data is redesigned based on the statistical analysis. To further improve the perceived picture quality, a Perceptual Distortion Measure (PDM) based on human vision model is used for the EBCOT of the intra-frame coder. A visibility assessment of the quantization error of various subbands in the DWT domain is performed through subjective tests. In summary, all these findings have solved the issues originated from the proposed perceptual video coding framework. They include: a working DWT/MC/DPCM video coding framework with superior coding efficiency on sequences with translational or head-shoulder motion; an adaptive switching mechanism between frame and field coding mode; an effective LBS based MC scheme in the DWT domain; a methodology of the context design for entropy coding of the inter-frame data; a PDM which replaces the MSE inside the EBCOT coding engine for the intra-frame coder, which provides improvement on the perceived quality of intra-frames; a visibility assessment to the quantization errors in the DWT domain
    corecore