5,833 research outputs found

    Watermarking for multimedia security using complex wavelets

    Get PDF
    This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    The effects of transients on photospheric and chromospheric power distributions

    Get PDF
    We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα\alpha line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as "power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can strongly influence the power-maps. The short and finite lifetime of these events strongly affects all powermaps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously, can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect in the power suppression around 3 minutes and wave interaction may play a key role here. Our high cadence observations reveal that flows, waves and shocks manifest in presence of magnetic fields to form a non-linear magnetohydrodynamic system.Comment: 11 pages, 11 Figures, 4 movies (will be available online in ApJ). ApJ (accepted

    Intelligent OFDM telecommunication system. Part 1. Model of complex and quaternion systems

    Get PDF
    In this paper, we aim to investigate the superiority and practicability of many-parameter transforms (MPTs) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication systems based on complex and quaternion MPTs. The new systems use inverse MPT (IMPT) for modulation at the transmitter and MPT for demodulation at the receiver. The purpose of employing the MPT is to improve: 1) the PHY-LS of wireless transmissions against to the wide-band anti-jamming and anti-eavesdropping communication; 2) the bit error rate (BER) performance with respect to the conventional OFDM-TCS; 3) the peak to average power ratio (PAPR). Each MPT depends on finite set of independent parameters (angles). When parameters are changed, many-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. For this reason, the concrete values of parameters are specific "key" for entry into OFDM-TCS. Vector of parameters belong to multi-dimension torus space. Scanning of this space for find out the "key" (the concrete values of parameters) is hard problem. MPT has the form of the product of the Jacobi rotation matrixes and it describes a fast algorithm for MPT. The main advantage of using MPT in OFDM TCS is that it is a very flexible anti-eavesdropping and anti-jamming Intelligent OFDM TCS. To the best of our knowledge, this is the first work that utilizes the MPT theory to facilitate the PHY-LS through parameterization of unitary transforms. © 2019 IOP Publishing Ltd. All rights reserved
    corecore