6,176 research outputs found

    Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI

    Get PDF
    Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space or/and in time. The performance of parallel imaging strongly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2D- or slice-specific regularization in the wavelet domain has been deeply investigated. In this paper, we extend this approach using 3D-wavelet representations in order to handle all slices together and address reconstruction artifacts which propagate across adjacent slices. The gain induced by such extension (3D-Unconstrained Wavelet Regularized -SENSE: 3D-UWR-SENSE) is validated on anatomical image reconstruction where no temporal acquisition is considered. Another important extension accounts for temporal correlations that exist between successive scans in functional MRI (fMRI). In addition to the case of 2D+t acquisition schemes addressed by some other methods like kt-FOCUSS, our approach allows us to deal with 3D+t acquisition schemes which are widely used in neuroimaging. The resulting 3D-UWR-SENSE and 4D-UWR-SENSE reconstruction schemes are fully unsupervised in the sense that all regularization parameters are estimated in the maximum likelihood sense on a reference scan. The gain induced by such extensions is illustrated on both anatomical and functional image reconstruction, and also measured in terms of statistical sensitivity for the 4D-UWR-SENSE approach during a fast event-related fMRI protocol. Our 4D-UWR-SENSE algorithm outperforms the SENSE reconstruction at the subject and group levels (15 subjects) for different contrasts of interest (eg, motor or computation tasks) and using different parallel acceleration factors (R=2 and R=4) on 2x2x3mm3 EPI images.Comment: arXiv admin note: substantial text overlap with arXiv:1103.353

    Parallel Algorithm and Hybrid Regularization for Dynamic PET Reconstruction

    Get PDF
    International audienceTo improve the estimation at the voxel level in dynamic Positron Emission Tomography (PET) imaging, we propose to develop a convex optimization approach based on a recently proposed parallel proximal method (PPXA). This class of algorithms was successfully employed for 2D deconvolution in the presence of Poisson noise and it is extended here to (dynamic) space + time PET image reconstruction. Hybrid regularization defined as a sum of a total variation and a sparsity measure is considered in this paper. The total variation is applied to each temporal-frame and a wavelet regularization is considered for the space+time data. Total variation allows us to smooth the wavelet artifacts introduced when the wavelet regularization is used alone. The proposed algorithm was evaluated on simulated dynamic fluorodeoxyglucose (FDG) brain data and compared with a regularized Expectation Maximization (EM) reconstruction. From the reconstructed dynamic images, parametric maps of the cerebral metabolic rate of glucose (CMRglu) were computed. Our approach shows a better reconstruction at the voxel level
    • …
    corecore