548 research outputs found

    Audio Source Separation Using Sparse Representations

    Get PDF
    This is the author's final version of the article, first published as A. Nesbit, M. G. Jafari, E. Vincent and M. D. Plumbley. Audio Source Separation Using Sparse Representations. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 10, pp. 246-264. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch010file: NesbitJafariVincentP11-audio.pdf:n\NesbitJafariVincentP11-audio.pdf:PDF owner: markp timestamp: 2011.02.04file: NesbitJafariVincentP11-audio.pdf:n\NesbitJafariVincentP11-audio.pdf:PDF owner: markp timestamp: 2011.02.04The authors address the problem of audio source separation, namely, the recovery of audio signals from recordings of mixtures of those signals. The sparse component analysis framework is a powerful method for achieving this. Sparse orthogonal transforms, in which only few transform coefficients differ significantly from zero, are developed; once the signal has been transformed, energy is apportioned from each transform coefficient to each estimated source, and, finally, the signal is reconstructed using the inverse transform. The overriding aim of this chapter is to demonstrate how this framework, as exemplified here by two different decomposition methods which adapt to the signal to represent it sparsely, can be used to solve different problems in different mixing scenarios. To address the instantaneous (neither delays nor echoes) and underdetermined (more sources than mixtures) mixing model, a lapped orthogonal transform is adapted to the signal by selecting a basis from a library of predetermined bases. This method is highly related to the windowing methods used in the MPEG audio coding framework. In considering the anechoic (delays but no echoes) and determined (equal number of sources and mixtures) mixing case, a greedy adaptive transform is used based on orthogonal basis functions that are learned from the observed data, instead of being selected from a predetermined library of bases. This is found to encode the signal characteristics, by introducing a feedback system between the bases and the observed data. Experiments on mixtures of speech and music signals demonstrate that these methods give good signal approximations and separation performance, and indicate promising directions for future research

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift zz\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I

    Detection and removal of eyeblink artifacts from EEG using wavelet analysis and independent component analysis

    Get PDF
    Electrical signals generated by brain activity that are measured by the electroencephalogram can be distorted by electrical activity originating from eyeblinks and eye movements. This thesis proposes a new technique to identify and remove eyeblink artifacts from EEG data. An algorithm using a combination of wavelet analysis and independent component analysis (ICA) is implemented to detect the temporal location of the eyeblink artifact and eliminate it without compromising the integrity of the primary EEG data. The discrete wavelet transform is performed on 10 second epochs of data to detect the occurrence of ocular artifact. ICA is used to separate out the independent components within the data and the temporal locations of the eyeblink are used to remove the artifact and reconstruct the EEG data without that source of distortion. The results obtained indicate that the technique implemented may be robust enough to effectively process EEG data and is capable of removing eyeblink artifacts successfully when they are prominent and the data does not contain a great deal of movement artifact. The results show an 88.68% detection rate, a false positive rate of 4.03%, and an 87.23% removal rate for all eyeblinks that were accurately detected. The statistics obtained compared favorably with work done by others in this field of investigation

    Signal Decomposition Methods for Reducing Drawbacks of the DWT

    Get PDF
    Besides many advantages of wavelet transform, it has several drawbacks, e.g. ringing, shift variance, aliasing and lack of directionality. Some of them can be eliminated by using wavelet packet transform, stationary wavelet transform, complex wavelet transform, adaptive directional lifting-based wavelet transform, or adaptive wavelet filter banks that use either L2 or L1 norm. This paper contains an overview of these methods

    Dependent Component Analysis for Multi-frame Image Restoration and Enhancement

    Get PDF
    Abstract Independent component analysis (ICA
    corecore