441 research outputs found

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Arrayed LiDAR signal analysis for automotive applications

    Get PDF
    Light detection and ranging (LiDAR) is one of the enabling technologies for advanced driver assistance and autonomy. Advances in solid-state photon detector arrays offer the potential of high-performance LiDAR systems but require novel signal processing approaches to fully exploit the dramatic increase in data volume an arrayed detector can provide. This thesis presents two approaches applicable to arrayed solid-state LiDAR. First, a novel block independent sparse depth reconstruction framework is developed, which utilises a random and very sparse illumination scheme to reduce illumination density while improving sampling times, which further remain constant for any array size. Compressive sensing (CS) principles are used to reconstruct depth information from small measurement subsets. The smaller problem size of blocks reduces the reconstruction complexity, improves compressive depth reconstruction performance and enables fast concurrent processing. A feasibility study of a system proposal for this approach demonstrates that the required logic could be practically implemented within detector size constraints. Second, a novel deep learning architecture called LiDARNet is presented to localise surface returns from LiDAR waveforms with high throughput. This single data driven processing approach can unify a wide range of scenarios, making use of a training-by-simulation methodology. This augments real datasets with challenging simulated conditions such as multiple returns and high noise variance, while enabling rapid prototyping of fast data driven processing approaches for arrayed LiDAR systems. Both approaches are fast and practical processing methodologies for arrayed LiDAR systems. These retrieve depth information with excellent depth resolution for wide operating ranges, and are demonstrated on real and simulated data. LiDARNet is a rapid approach to determine surface locations from LiDAR waveforms for efficient point cloud generation, while block sparse depth reconstruction is an efficient method to facilitate high-resolution depth maps at high frame rates with reduced power and memory requirements.Engineering and Physical Sciences Research Council (EPSRC

    LIDAR data classification and compression

    Get PDF
    Airborne Laser Detection and Ranging (LIDAR) data has a wide range of applications in agriculture, archaeology, biology, geology, meteorology, military and transportation, etc. LIDAR data consumes hundreds of gigabytes in a typical day of acquisition, and the amount of data collected will continue to grow as sensors improve in resolution and functionality. LIDAR data classification and compression are therefore very important for managing, visualizing, analyzing and using this huge amount of data. Among the existing LIDAR data classification schemes, supervised learning has been used and can obtain up to 96% of accuracy. However some of the features used are not readily available, and the training data is also not always available in practice. In existing LIDAR data compression schemes, the compressed size can be 5%-23% of the original size, but still could be in the order of gigabyte, which is impractical for many applications. The objectives of this dissertation are (1) to develop LIDAR classification schemes that can classify airborne LIDAR data more accurately without some features or training data that existing work requires; (2) to explore lossy compression schemes that can compress LIDAR data at a much higher compression rate than is currently available. We first investigate two independent ways to classify LIDAR data depending on the availability of training data: when training data is available, we use supervised machine learning techniques such as support vector machine (SVM); when training data is not readily available, we develop an unsupervised classification method that can classify LIDAR data as good as supervised classification methods. Experimental results show that the accuracy of our classification results are over 99%. We then present two new lossy LIDAR data compression methods and compare their performance. The first one is a wavelet based compression scheme while the second one is geometry based. Our new geometry based compression is a geometry and statistics driven LIDAR point-cloud compression method which combines both application knowledge and scene content to enable fast transmission from the sensor platform while preserving the geometric properties of objects within a scene. The new algorithm is based on the idea of compression by classification. It utilizes the unique height function simplicity as well as the local spatial coherence and linearity of the aerial LIDAR data and can automatically compress the data to the desired level-of-details defined by the user. Either of the two developed classification methods can be used to automatically detect regions that are not locally linear such as vegetations or trees. In those regions, the local statistics descriptions, such as mean, variance, expectation, etc., are stored to efficiently represent the region and restore the geometry in the decompression phase. The new geometry-based compression schemes for building and ground data can compress efficiently and significantly reduce the file size, while retaining a good fit for the scalable "zoom in" requirements. Experimental results show that compared with existing LIDAR lossy compression work, our proposed approach achieves two orders of magnitude lower bit rate with the same quality, making it feasible for applications that were not practical before. The ability to store information into a database and query them efficiently becomes possible with the proposed highly efficient compression scheme.Includes bibliographical references (pages 106-116)

    Tapered whisker reservoir computing for real-time terrain identification-based navigation

    Get PDF
    This paper proposes a new method for real-time terrain recognition-based navigation for mobile robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories in real-time to achieve safe and efficient navigation in complex terrains. However, current methods largely depend on visual and IMU (inertial measurement units) that demand high computational resources for real-time applications. In this paper, a real-time terrain identification-based navigation method is proposed using an on-board tapered whisker-based reservoir computing system. The nonlinear dynamic response of the tapered whisker was investigated in various analytical and Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical simulations and experiments were cross-checked with each other to verify that whisker sensors can separate different frequency signals directly in the time domain and demonstrate the computational superiority of the proposed system, and that different whisker axis locations and motion velocities provide variable dynamical response information. Terrain surface-following experiments demonstrated that our system could accurately identify changes in the terrain in real-time and adjust its trajectory to stay on specific terrain

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore