9,299 research outputs found

    Symmetrization and enhancement of the continuous Morlet transform

    Full text link
    The forward and inverse wavelet transform using the continuous Morlet basis may be symmetrized by using an appropriate normalization factor. The loss of response due to wavelet truncation is addressed through a renormalization of the wavelet based on power. The spectral density has physical units which may be related to the squared amplitude of the signal, as do its margins the mean wavelet power and the integrated instant power, giving a quantitative estimate of the power density with temporal resolution. Deconvolution with the wavelet response matrix reduces the spectral leakage and produces an enhanced wavelet spectrum providing maximum resolution of the harmonic content of a signal. Applications to data analysis are discussed.Comment: 12 pages, 8 figures, 2 tables, minor revision, final versio

    Block thresholding for wavelet-based estimation of function derivatives from a heteroscedastic multichannel convolution model

    Full text link
    We observe nn heteroscedastic stochastic processes {Yv(t)}v\{Y_v(t)\}_{v}, where for any v∈{1,…,n}v\in\{1,\ldots,n\} and t∈[0,1]t \in [0,1], Yv(t)Y_v(t) is the convolution product of an unknown function ff and a known blurring function gvg_v corrupted by Gaussian noise. Under an ordinary smoothness assumption on g1,…,gng_1,\ldots,g_n, our goal is to estimate the dd-th derivatives (in weak sense) of ff from the observations. We propose an adaptive estimator based on wavelet block thresholding, namely the "BlockJS estimator". Taking the mean integrated squared error (MISE), our main theoretical result investigates the minimax rates over Besov smoothness spaces, and shows that our block estimator can achieve the optimal minimax rate, or is at least nearly-minimax in the least favorable situation. We also report a comprehensive suite of numerical simulations to support our theoretical findings. The practical performance of our block estimator compares very favorably to existing methods of the literature on a large set of test functions

    Nonparametric methods for volatility density estimation

    Full text link
    Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on discretely sampled continuous time processes and discrete time models will be discussed. The key insight for the analysis is a transformation of the volatility density estimation problem to a deconvolution model for which standard methods exist. Three type of nonparametric density estimators are reviewed: the Fourier-type deconvolution kernel density estimator, a wavelet deconvolution density estimator and a penalized projection estimator. The performance of these estimators will be compared. Key words: stochastic volatility models, deconvolution, density estimation, kernel estimator, wavelets, minimum contrast estimation, mixin

    Wavelet Deconvolution in a Periodic Setting with Long-Range Dependent Errors

    Full text link
    In this paper, a hard thresholding wavelet estimator is constructed for a deconvolution model in a periodic setting that has long-range dependent noise. The estimation paradigm is based on a maxiset method that attains a near optimal rate of convergence for a variety of L_p loss functions and a wide variety of Besov spaces in the presence of strong dependence. The effect of long-range dependence is detrimental to the rate of convergence. The method is implemented using a modification of the WaveD-package in R and an extensive numerical study is conducted. The numerical study supplements the theoretical results and compares the LRD estimator with na\"ively using the standard WaveD approach

    The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution

    Get PDF
    This paper provides an introduction to a software package called waved making available all code necessary for reproducing the figures in the recently published articles on the WaveD transform for wavelet deconvolution of noisy signals. The forward WaveD transforms and their inverses can be computed using any wavelet from the Meyer family. The WaveD coefficients can be depicted according to time and resolution in several ways for data analysis. The algorithm which implements the translation invariant WaveD transform takes full advantage of the fast Fourier transform (FFT) and runs in O(n(log n)^2)steps only. The waved package includes functions to perform thresholding and tne resolution tuning according to methods in the literature as well as newly designed visual and statistical tools for assessing WaveD fits. We give a waved tutorial session and review benchmark examples of noisy convolutions to illustrate the non-linear adaptive properties of wavelet deconvolution.

    Anisotropic Denoising in Functional Deconvolution Model with Dimension-free Convergence Rates

    Get PDF
    In the present paper we consider the problem of estimating a periodic (r+1)(r+1)-dimensional function ff based on observations from its noisy convolution. We construct a wavelet estimator of ff, derive minimax lower bounds for the L2L^2-risk when ff belongs to a Besov ball of mixed smoothness and demonstrate that the wavelet estimator is adaptive and asymptotically near-optimal within a logarithmic factor, in a wide range of Besov balls. We prove in particular that choosing this type of mixed smoothness leads to rates of convergence which are free of the "curse of dimensionality" and, hence, are higher than usual convergence rates when rr is large. The problem studied in the paper is motivated by seismic inversion which can be reduced to solution of noisy two-dimensional convolution equations that allow to draw inference on underground layer structures along the chosen profiles. The common practice in seismology is to recover layer structures separately for each profile and then to combine the derived estimates into a two-dimensional function. By studying the two-dimensional version of the model, we demonstrate that this strategy usually leads to estimators which are less accurate than the ones obtained as two-dimensional functional deconvolutions. Indeed, we show that unless the function ff is very smooth in the direction of the profiles, very spatially inhomogeneous along the other direction and the number of profiles is very limited, the functional deconvolution solution has a much better precision compared to a combination of MM solutions of separate convolution equations. A limited simulation study in the case of r=1r=1 confirms theoretical claims of the paper.Comment: 29 pages, 1 figure, 1 tabl
    • …
    corecore