3,332 research outputs found

    Development of retinal blood vessel segmentation methodology using wavelet transforms for assessment of diabetic retinopathy

    Get PDF
    Automated image processing has the potential to assist in the early detection of diabetes, by detecting changes in blood vessel diameter and patterns in the retina. This paper describes the development of segmentation methodology in the processing of retinal blood vessel images obtained using non-mydriatic colour photography. The methods used include wavelet analysis, supervised classifier probabilities and adaptive threshold procedures, as well as morphology-based techniques. We show highly accurate identification of blood vessels for the purpose of studying changes in the vessel network that can be utilized for detecting blood vessel diameter changes associated with the pathophysiology of diabetes. In conjunction with suitable feature extraction and automated classification methods, our segmentation method could form the basis of a quick and accurate test for diabetic retinopathy, which would have huge benefits in terms of improved access to screening people for risk or presence of diabetes

    Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification

    Get PDF
    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or non-vessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and continuous two-dimensional Morlet wavelet transform responses taken at multiple scales. The Morlet wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces and compare its performance with the linear minimum squared error classifier. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE and STARE databases of manually labeled non-mydriatic images. On the DRIVE database, it achieves an area under the receiver operating characteristic (ROC) curve of 0.9598, being slightly superior than that presented by the method of Staal et al.Comment: 9 pages, 7 figures and 1 table. Accepted for publication in IEEE Trans Med Imag; added copyright notic

    Review of Face Detection Systems Based Artificial Neural Networks Algorithms

    Get PDF
    Face detection is one of the most relevant applications of image processing and biometric systems. Artificial neural networks (ANN) have been used in the field of image processing and pattern recognition. There is lack of literature surveys which give overview about the studies and researches related to the using of ANN in face detection. Therefore, this research includes a general review of face detection studies and systems which based on different ANN approaches and algorithms. The strengths and limitations of these literature studies and systems were included also.Comment: 16 pages, 12 figures, 1 table, IJMA Journa

    WARP: Wavelets with adaptive recursive partitioning for multi-dimensional data

    Full text link
    Effective identification of asymmetric and local features in images and other data observed on multi-dimensional grids plays a critical role in a wide range of applications including biomedical and natural image processing. Moreover, the ever increasing amount of image data, in terms of both the resolution per image and the number of images processed per application, requires algorithms and methods for such applications to be computationally efficient. We develop a new probabilistic framework for multi-dimensional data to overcome these challenges through incorporating data adaptivity into discrete wavelet transforms, thereby allowing them to adapt to the geometric structure of the data while maintaining the linear computational scalability. By exploiting a connection between the local directionality of wavelet transforms and recursive dyadic partitioning on the grid points of the observation, we obtain the desired adaptivity through adding to the traditional Bayesian wavelet regression framework an additional layer of Bayesian modeling on the space of recursive partitions over the grid points. We derive the corresponding inference recipe in the form of a recursive representation of the exact posterior, and develop a class of efficient recursive message passing algorithms for achieving exact Bayesian inference with a computational complexity linear in the resolution and sample size of the images. While our framework is applicable to a range of problems including multi-dimensional signal processing, compression, and structural learning, we illustrate its work and evaluate its performance in the context of 2D and 3D image reconstruction using real images from the ImageNet database. We also apply the framework to analyze a data set from retinal optical coherence tomography

    QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data

    Full text link
    Optical coherence tomography (OCT) enables high-resolution and non-invasive 3D imaging of the human retina but is inherently impaired by speckle noise. This paper introduces a spatio-temporal denoising algorithm for OCT data on a B-scan level using a novel quantile sparse image (QuaSI) prior. To remove speckle noise while preserving image structures of diagnostic relevance, we implement our QuaSI prior via median filter regularization coupled with a Huber data fidelity model in a variational approach. For efficient energy minimization, we develop an alternating direction method of multipliers (ADMM) scheme using a linearization of median filtering. Our spatio-temporal method can handle both, denoising of single B-scans and temporally consecutive B-scans, to gain volumetric OCT data with enhanced signal-to-noise ratio. Our algorithm based on 4 B-scans only achieved comparable performance to averaging 13 B-scans and outperformed other current denoising methods.Comment: submitted to MICCAI'1
    corecore