2,050 research outputs found

    Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM

    Get PDF
    The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work

    PSO-SVM hybrid system for melanoma detection from histo-pathological images

    Get PDF
    This paper introduces an automated system for skin cancer (melanoma) detection from Histo-pathological images sampled from microscopic slides of skin biopsy. The proposed system is a hybrid system based on Particle Swarm Optimization and Support Vector Machine (PSO-SVM). The features used are extracted from the grayscale image histogram, the co-occurrence matrix and the energy of the wavelet coefficients resulting from the wavelet packet decomposition. The PSO-SVM system selects the best feature set and the best values for the SVM parameters (C and Ī³) that optimize the performance of the SVM classifier.Ā  Ā The system performance is tested on a real dataset obtained from the Southern Pathology Laboratory in Wollongong NSW, Australia. Evaluation results show a classification accuracy of 87.13%, a sensitivity of 94.1% and a specificity of 80.22%.The sensitivity and specificity results are comparable to those obtained by dermatologists

    A hybrid system for skin lesion detection: Based on gabor wavelet and support vector machine

    Full text link
    Ā© 2015 Taylor & Francis Group, London. Severe melanoma is potentially life-threatening. A novel methodology for automatic feature extraction from histo-pathological images and subsequent classification is presented. The proposed automated system uses a number of features extracted from images of skin lesions through image processing techniques which consisted of a spatially winner and adaptive median filter then applied Gabor filter bank to improve diagnostic accuracy. Histogram equalization to enhance the contrast of the images prior to segmentation is used. Then, a wavelet approach is used to extract the features; more specifically Wavelet Packet Transform (WPT). This article introduces a novel melanoma detection strategy using a hybrid particle swarm - based support vector machine (SVMā€“WLGā€“PSO) technique. The extracted features are reduced by using a particle swarm optimization (PSO), this was used to optimize the SVM parameters as a feature selection and finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier to diagnose skin biopsies from patients as either malignant melanoma or benign nevi. The obtained classification accuracies show better performance in comparison to similar approaches for feature extraction. The proposed system is able to achieve one of the best results with classification accuracy of 87.13%, sensitivity of 94.1% and specificity of 80.22%

    Clustering Optimized Portrait Matting Algorithm Based on Improved Sparrow Algorithm

    Get PDF
    As a result of the influence of individual appearance and lighting conditions, aberrant noise spots cause significant mis-segmentation for frontal portraits. This paper presents an accurate portrait segmentation approach based on a combination of wavelet proportional shrinkage and an upgraded sparrow search (SSA) clustering algorithm to solve the accuracy challenge of segmentation for frontal portraits. The brightness component of the human portrait in HSV space is first subjected to wavelet scaling denoising. The elite inverse learning approach and adaptive weighting factor are then implemented to optimize the initial center location of the K-Means algorithm to improve the initial distribution and accelerate the convergence speed of SSA population members. The pixel segmentation accuracy of the proposed method is approximately 70% and 15% higher than two comparable traditional methods, while the similarity of color image features is approximately 10% higher. Experiments show that the proposed method has achieved a high level of accuracy in capricious lighting conditions

    A Review on the use of Artificial Intelligence Techniques in Brain MRI Analysis

    Get PDF
    Over the past 20 years, the global research going on in Artificial Intelligence in applica-tions in medication is a venue internationally, for medical trade and creating an ener-getic research community. The Artificial Intelligence in Medicine magazine has posted a massive amount. This paper gives an overview of the history of AI applications in brain MRI analysis to research its effect at the wider studies discipline and perceive de-manding situations for its destiny. Analysis of numerous articles to create a taxono-my of research subject matters and results was done. The article is classed which might be posted between 2000 and 2018 with this taxonomy. Analyzed articles have excessive citations. Efforts are useful in figuring out popular studies works in AI primarily based on mind MRI analysis throughout specific issues. The biomedical prognosis was ruled by way of knowledge engineering research in its first decade, whilst gadget mastering, and records mining prevailed thereafter. Together these two topics have contributed a lot to the latest medical domain

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    K-NN Classification of Brain Dominance

    Get PDF
    The brain dominance is referred to right brain and left brain. The brain dominance can be observed with an Electroencephalogram (EEG) signal to identify different types of electrical pattern in the brain and will form the foundation of oneā€™s personality. The objective of this project is to analyze brain dominance by using Wavelet analysis. The Wavelet analysis is done in 2-D Gabor Wavelet and the result of 2-D Gabor Wavelet is validated with an establish brain dominance questionnaire. Twenty-one samples from University Malaysia Pahang (UMP) student are required to answer the establish brain dominance questionnaire has been collected in this experiment. Then, brainwave signal will record using Emotiv device. The threshold value is used to remove the artifact and noise from data collected to acquire a smoother signal. Next, the Band-pass filter is applied to the signal to extract the sub-band frequency components from Delta, Theta, Alpha, and Beta. After that, it will extract the energy of the signal from image feature extraction process. Next the features were classified by using K-Nearest Neighbor (K-NN) in two ratios which 70:30 and 80:20 that are training set and testing set (training: testing). The ratio of 70:30 gave the highest percentage of 83% accuracy while a ratio of 80:20 gave 100% accuracy. The result shows that 2-D Gabor Wavelet was able to classify brain dominance with accuracy 83% to 100%
    • ā€¦
    corecore