510 research outputs found

    An Adaptive Neuro-Fuzzy Inference System-Based Approach for Oil and Gas Pipeline Defect Depth Estimation

    Get PDF
    Abstract-To determine the severity of metal-loss defects in oil and gas pipelines, the depth of potential defects, along with their length, needs first to be estimated. For this purpose, pipeline engineers use intelligent Magnetic Flux Leakage (MFL) sensors that scan the metal pipelines and collect defect-related data. However, due to the huge amount of the collected MFL data, the defect depth estimation task is cumbersome, timeconsuming, and error-prone. In this paper, we propose an adaptive neuro-fuzzy inference system (ANFIS)-based approach to estimate defect depths from MFL signals. Depth-related features are first extracted from the MFL signals and then are used to train the neural network to tune the parameters of the membership functions of the fuzzy inference system. A hybrid learning algorithm that combines least-squares and back propagation gradient descent method is adopted. Moreover, to achieve an optimal performance by the proposed approach, highly-discriminant features are selected from the obtained features by using the weight-based support vector machine (SVM). Experimental work has shown that encouraging results are obtained. Within error-tolerance ranges of ±15%, ±20%, ±25%, and ±30%, the depth estimation accuracies obtained by the proposed technique are 80.39%, 87.75%, 91.18%, and 95.59%, respectively. Moreover, further improvement can be easily achieved by incorporating new and more discriminant features

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    A review of ultrasonic sensing and machine learning methods to monitor industrial processes

    Get PDF
    Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements owing to their strong performance. These techniques also offer advantages over calibration procedures of more complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the correlation of sensor data to important process information. However, their implementation requires expertise to extract and select appropriate features from the sensor measurements as model inputs, select the type of machine learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on-line monitoring of industrial processes and other similar applications. The article first reviews the use of ultrasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and machine learning. We include literature from other sectors such as structural health monitoring. This review covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations for applying machine learning to the reviewed processes are made

    Deep learning in automated ultrasonic NDE -- developments, axioms and opportunities

    Get PDF
    The analysis of ultrasonic NDE data has traditionally been addressed by a trained operator manually interpreting data with the support of rudimentary automation tools. Recently, many demonstrations of deep learning (DL) techniques that address individual NDE tasks (data pre-processing, defect detection, defect characterisation, and property measurement) have started to emerge in the research community. These methods have the potential to offer high flexibility, efficiency, and accuracy subject to the availability of sufficient training data. Moreover, they enable the automation of complex processes that span one or more NDE steps (e.g. detection, characterisation, and sizing). There is, however, a lack of consensus on the direction and requirements that these new methods should follow. These elements are critical to help achieve automation of ultrasonic NDE driven by artificial intelligence such that the research community, industry, and regulatory bodies embrace it. This paper reviews the state-of-the-art of autonomous ultrasonic NDE enabled by DL methodologies. The review is organised by the NDE tasks that are addressed by means of DL approaches. Key remaining challenges for each task are noted. Basic axiomatic principles for DL methods in NDE are identified based on the literature review, relevant international regulations, and current industrial needs. By placing DL methods in the context of general NDE automation levels, this paper aims to provide a roadmap for future research and development in the area.Comment: Accepted version to be published in NDT & E Internationa

    Detection of multiple defects based on structural health monitoring of pipeline using guided waves technique

    Get PDF
    Monitoring and inspecting the health condition and state of the pipelines are significant processes for an early detection of any leaking or damages for avoiding disasters. Although most Non Destructive Test (NDT) techniques are able to detect and locate damage during the maintenance intervals, interrupted services could result in high cost and lots of time consumed. In addition, most NDTs are utilized to detect and locate single damage such as axial crack, circular crack, or vertical crack only. Unfortunately, these NDTs are unable to detect or localize multi-type of damages, simultaneously. In this research, the proposed method utilizes the Structural Health Monitoring (SHM) based on guided wave techniques for monitoring steel pipeline continuously in detecting and locating multi-damages. These multi damages include the circumference, hole and slopping cracks. A physical experimental works as well as numerical simulation using ANSYS were conducted to achieve the research objectives. The experimental work was performed to validate the numerical simulation. An artificial neural network was used to classify the damages into ten classes for each type of damage including circumference, hole and sloping cracks. The obtained results showed that the numerical simulation was in agreement with the experimental work with relative error of less than 1.5%. In addition, the neural network demonstrated a feasible method for classifying the damages into classes with the accuracy ranged from 75% to 82%. These results are important to provide substantial information for active condition monitoring activities

    Auto-diagnosis of time-of-flight for ultrasonic signal based on defect peaks tracking model

    Get PDF
    With the popularization of humans working in tandem with robots and artificial intelligence (AI) by Industry 5.0, ultrasonic non-destructive testing (NDT)) technology has been increasingly used in quality inspections in the industry. As a crucial part of handling ultrasonic testing results–signal processing, the current approach focuses on professional training to perform signal discrimination but automatic and intelligent signal optimization and estimation lack systematic research. Though the automated and intelligent framework for ultrasonic echo signal processing has already exhibited essential research significance for diagnosing defect locations, the real-time applicability of the algorithm for the time-of-flight (ToF) estimation is rarely considered, which is a very important indicator for intelligent detection. This paper conducts a systematic comparison among different ToF algorithms for the first time and presents the auto-diagnosis of the ToF approach based on the Defect Peaks Tracking Model (DPTM). The proposed DPTM is used for ultrasonic echo signal processing and recognition for the first time. The DPTM using the Hilbert transform was verified to locate the defect with the size of 2–10 mm, in which the wavelet denoising method was adopted. With the designed mechanical fixture through 3D printing technology on the pipeline to inspect defects, the difficulty of collecting sufficient data could be conquered. The maximum auto-diagnosis error could be reduced to 0.25% and 1.25% for steel plate and pipeline under constant pressure, respectively, which were much smaller than those with the DPTM adopting the cross-correlation. The real-time auto-diagnosis identification feature of DPTM has the potential to be combined with AI in future work, such as machine learning and deep learning, to achieve more intelligent approaches for industrial health inspection

    Development and Experimentation of Magnetostrictive Sensors for Inspection and Monitoring of Piping Systems

    Get PDF
    Nondestructive Evaluation – NDE, is an important aspect of the integrity management of industrial plants, where pipe systems are the dominant component. During the last decade Ultrasonic Guided Waves (UGW), have started to be used as a useful instrument for on-stream long range inspection of pipes. Various procedures and systems have been proposed for the generation and detection of UGW. Presently, they are based on piezoelectric (PZT) or magnetostrictive (MT) transducers or electromagnetic acoustic transducers (EMAT). It is generally known that PZT based systems have elevated diagnostic capacities due to their high transduction efficiency. However, the elevated costs of installation of such devices make their use for long-term monitoring of piping systems quite improbable. On the other hand, the MT based systems have the advantage of the reduced costs of the composing materials, simplicity of attaching it to the pipe wall and flexibility regarding the diameters of the pipes that can be inspected. Still, its single-element configuration limits the capacity to characterize the detected discontinuities in terms of geometry, thus being unable to distinguish between possible flaws from symmetrical features, normally located on pipes, like welds or flanges. Furthermore, its reduced capability to geometrically characterize flaws makes the classification of their severity particularly difficult. The improvement of the diagnostic capacity of MT based systems in order to make practically possible and economically convenient its use in monitoring applications is the main purpose of this thesis. In this dissertation multiple laboratory and field experiments are described and the magnetostrictive technology is evaluated. Furthermore, a new magnetostrictive transducer for UGW acquisition is presented. It allows step-by-step data acquisition around the pipe circumference revealing important information on the geometry and circumferential position of flaws. The new sensor was validated by computer simulations as well as further laboratory and field tests. The resulting data was used as input for various digital signal processing techniques to describe geometrically the features detected in the acquired signal. The final results outline the potential of MT based long-range inspection to reach also a good sensitivity and a good defect sizing and classification with respect to conventional techniques, making it an important candidate for monitoring activities for the integrity management of industrial plants

    Advanced Sensing, Fault Diagnostics, and Structural Health Management

    Get PDF
    Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries. With the advancement of science and technology, modern structural and mechanical systems are becoming more and more complex. Due to the continuous nature of operation and utilization, modern systems are heavily susceptible to faults. Hence, the operational reliability and safety of the systems can be greatly enhanced by using the multifaced strategy of designing novel sensing technologies and advanced intelligent algorithms and constructing modern data acquisition systems and structural health monitoring techniques. As a result, this research domain has been receiving a significant amount of attention from researchers in recent years. Furthermore, the research findings have been successfully applied in a wide range of fields such as aerospace, manufacturing, transportation and processes

    Oil and Gas flow Anomaly Detection on offshore naturally flowing wells using Deep Neural Networks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become greener, and hence to act in a manner not required previously. While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance technologies, that would foresee potential failures, making production safer, lowering downtime, increasing productivity and diminishing maintenance costs. Many efforts were applied in order to define the most accurate and effective predictive methods, however data scarcity affects the speed and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, using the open public data from Petrobras, that was developed by experts. For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM and GRU backbones, were implemented for multi-class classification of undesirable events on naturally flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on Genetic Algorithms as being the most advanced methods for such kind of tasks. The research concluded with the best performing algorithm with 2 stacked GRU and the following vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. As the world faces many issues, one of which is the detrimental effect of heavy industries to the environment and as result adverse global climate change, this project is an attempt to contribute to the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it more efficient, transparent and sustainable
    • …
    corecore