628 research outputs found

    Wavelet moments for recognizing human body posture from 3D scans

    Get PDF
    This paper addresses the problem of recognizing a human body (HB) posture from a cloud of 3D points acquired by a human body scanner It suggests the wavelet transform coefficients (WTC) as 3D shape descriptors of the HB posture. The WTC showed to have a high discrimination power between posture classes. Integrated within a Bayesian classification framework and compared with other standard moments, the WTC showed great capabilities in discriminating between close postures. The qualities of the WTC features were also reflected on its classification rate, ranked first when compared with other 3D features

    Recognition of human body posture from a cloud of 3D data points using wavelet transform coefficients

    Get PDF
    Addresses the problem of recognizing a human body posture from a cloud of 3D points acquired by a human body scanner. Motivated by finding a representation that embodies a high discriminatory power between posture classes, a new type of feature is suggested, namely the wavelet transform coefficients (WTC) of the 3D data-point distribution projected on to the space of spherical harmonics. A feature selection technique is developed to find those features with high discriminatory power. Integrated within a Bayesian classification framework and compared with other standard features, the WTC showed great capability in discriminating between close postures. The qualities of the WTC features were also reflected in the experimental results carried out with artificially generated postures, where the WTC obtained the best classification rat

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Recording behaviour of indoor-housed farm animals automatically using machine vision technology: a systematic review

    Get PDF
    Large-scale phenotyping of animal behaviour traits is time consuming and has led to increased demand for technologies that can automate these procedures. Automated tracking of animals has been successful in controlled laboratory settings, but recording from animals in large groups in highly variable farm settings presents challenges. The aim of this review is to provide a systematic overview of the advances that have occurred in automated, high throughput image detection of farm animal behavioural traits with welfare and production implications. Peer-reviewed publications written in English were reviewed systematically following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. After identification, screening, and assessment for eligibility, 108 publications met these specifications and were included for qualitative synthesis. Data collected from the papers included camera specifications, housing conditions, group size, algorithm details, procedures, and results. Most studies utilized standard digital colour video cameras for data collection, with increasing use of 3D cameras in papers published after 2013. Papers including pigs (across production stages) were the most common (n = 63). The most common behaviours recorded included activity level, area occupancy, aggression, gait scores, resource use, and posture. Our review revealed many overlaps in methods applied to analysing behaviour, and most studies started from scratch instead of building upon previous work. Training and validation sample sizes were generally small (mean±s.d. groups = 3.8±5.8) and in data collection and testing took place in relatively controlled environments. To advance our ability to automatically phenotype behaviour, future research should build upon existing knowledge and validate technology under commercial settings and publications should explicitly describe recording conditions in detail to allow studies to be reproduced

    SpatioTemporal LBP and shape feature for human activity representation and recognition

    Get PDF
    In this paper, we propose a histogram based feature to represent and recognize human action in video sequences. Motion History Image (MHI) merges a video sequence into a single image. However, in this method, we use Directional Motion History Image (DMHI) to create four directional spatiotemporal templates. We, then, extract the Local Binary Pattern (LBP) from those templates. Then, spatiotemporal LBP histograms are formed to represent the distribution of those patterns which makes the feature vector. We also use shape feature taken from three selective snippets and concatenate them with the LBP histograms. We measure the performance of the proposed representation method along with some variants of it by experimenting on the Weizmann action dataset. Higher recognition rates found in the experiment suggest that, compared to complex representation, the proposed simple and compact representation can achieve robust recognition of human activity for practical use
    • …
    corecore