2,083 research outputs found

    Stochastic expansions using continuous dictionaries: L\'{e}vy adaptive regression kernels

    Get PDF
    This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. L\'{e}vy random fields and their stochastic integrals are employed to induce prior distributions for the unknown functions or, equivalently, for the number of kernels and for the parameters governing their features. Scaling, shape, and other features of the generating functions are location-specific to allow quite different function properties in different parts of the space, as with wavelet bases and other methods employing overcomplete dictionaries. We provide conditions under which the stochastic expansions converge in specified Besov or Sobolev norms. Under a Gaussian error model, this may be viewed as a sparse regression problem, with regularization induced via the L\'{e}vy random field prior distribution. Posterior inference for the unknown functions is based on a reversible jump Markov chain Monte Carlo algorithm. We compare the L\'{e}vy Adaptive Regression Kernel (LARK) method to wavelet-based methods using some of the standard test functions, and illustrate its flexibility and adaptability in nonstationary applications.Comment: Published in at http://dx.doi.org/10.1214/11-AOS889 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Classification via local multi-resolution projections

    Full text link
    We focus on the supervised binary classification problem, which consists in guessing the label YY associated to a co-variate X∈RdX \in \R^d, given a set of nn independent and identically distributed co-variates and associated labels (Xi,Yi)(X_i,Y_i). We assume that the law of the random vector (X,Y)(X,Y) is unknown and the marginal law of XX admits a density supported on a set \A. In the particular case of plug-in classifiers, solving the classification problem boils down to the estimation of the regression function \eta(X) = \Exp[Y|X]. Assuming first \A to be known, we show how it is possible to construct an estimator of η\eta by localized projections onto a multi-resolution analysis (MRA). In a second step, we show how this estimation procedure generalizes to the case where \A is unknown. Interestingly, this novel estimation procedure presents similar theoretical performances as the celebrated local-polynomial estimator (LPE). In addition, it benefits from the lattice structure of the underlying MRA and thus outperforms the LPE from a computational standpoint, which turns out to be a crucial feature in many practical applications. Finally, we prove that the associated plug-in classifier can reach super-fast rates under a margin assumption.Comment: 38 pages, 6 figure

    An oil painters recognition method based on cluster multiple kernel learning algorithm

    Get PDF
    A lot of image processing research works focus on natural images, such as in classification, clustering, and the research on the recognition of artworks (such as oil paintings), from feature extraction to classifier design, is relatively few. This paper focuses on oil painter recognition and tries to find the mobile application to recognize the painter. This paper proposes a cluster multiple kernel learning algorithm, which extracts oil painting features from three aspects: color, texture, and spatial layout, and generates multiple candidate kernels with different kernel functions. With the results of clustering numerous candidate kernels, we selected the sub-kernels with better classification performance, and use the traditional multiple kernel learning algorithm to carry out the multi-feature fusion classification. The algorithm achieves a better result on the Painting91 than using traditional multiple kernel learning directly

    Multiariate Wavelet-based sahpe preserving estimation for dependant observation

    Get PDF
    We present a new approach on shape preserving estimation of probability distribution and density functions using wavelet methodology for multivariate dependent data. Our estimators preserve shape constraints such as monotonicity, positivity and integration to one, and allow for low spatial regularity of the underlying functions. As important application, we discuss conditional quantile estimation for financial time series data. We show that our methodology can be easily implemented with B-splines, and performs well in a finite sample situation, through Monte Carlo simulations.Conditional quantile; time series; shape preserving wavelet estimation; B-splines; multivariate process

    Advances in pre-processing and model generation for mass spectrometric data analysis

    Get PDF
    The analysis of complex signals as obtained by mass spectrometric measurements is complicated and needs an appropriate representation of the data. Thereby the kind of preprocessing, feature extraction as well as the used similarity measure are of particular importance. Focusing on biomarker analysis and taking the functional nature of the data into account this task is even more complicated. A new mass spectrometry tailored data preprocessing is shown, discussed and analyzed in a clinical proteom study compared to a standard setting
    • …
    corecore