185 research outputs found

    Rehaussement du signal de parole par EMD et opérateur de Teager-Kaiser

    Get PDF
    The authors would like to thank Professor Mohamed Bahoura from Universite de Quebec a Rimouski for fruitful discussions on time adaptive thresholdingIn this paper a speech denoising strategy based on time adaptive thresholding of intrinsic modes functions (IMFs) of the signal, extracted by empirical mode decomposition (EMD), is introduced. The denoised signal is reconstructed by the superposition of its adaptive thresholded IMFs. Adaptive thresholds are estimated using the Teager–Kaiser energy operator (TKEO) of signal IMFs. More precisely, TKEO identifies the type of frame by expanding differences between speech and non-speech frames in each IMF. Based on the EMD, the proposed speech denoising scheme is a fully data-driven approach. The method is tested on speech signals with different noise levels and the results are compared to EMD-shrinkage and wavelet transform (WT) coupled with TKEO. Speech enhancement performance is evaluated using output signal to noise ratio (SNR) and perceptual evaluation of speech quality (PESQ) measure. Based on the analyzed speech signals, the proposed enhancement scheme performs better than WT-TKEO and EMD-shrinkage approaches in terms of output SNR and PESQ. The noise is greatly reduced using time-adaptive thresholding than universal thresholding. The study is limited to signals corrupted by additive white Gaussian noise

    Wavelet Packet Transform based Speech Enhancement via Two-Dimensional SPP Estimator with Generalized Gamma Priors

    Get PDF
    Despite various speech enhancement techniques have been developed for different applications, existing methods are limited in noisy environments with high ambient noise levels. Speech presence probability (SPP) estimation is a speech enhancement technique to reduce speech distortions, especially in low signal-to-noise ratios (SNRs) scenario. In this paper, we propose a new two-dimensional (2D) Teager-energyoperators (TEOs) improved SPP estimator for speech enhancement in time-frequency (T-F) domain. Wavelet packet transform (WPT) as a multiband decomposition technique is used to concentrate the energy distribution of speech components. A minimum mean-square error (MMSE) estimator is obtained based on the generalized gamma distribution speech model in WPT domain. In addition, the speech samples corrupted by environment and occupational noises (i.e., machine shop, factory and station) at different input SNRs are used to validate the proposed algorithm. Results suggest that the proposed method achieves a significant enhancement on perceptual quality, compared with four conventional speech enhancement algorithms (i.e., MMSE-84, MMSE-04, Wiener-96, and BTW)

    Wavelet speech enhancement based on time-scale adaptation

    Get PDF
    Abstract : We propose a new speech enhancement method based on time and scale adaptation of wavelet thresholds. The time dependency is introduced by approximating the Teager Energy of the wavelet coefficients, while the scale dependency is introduced by extending the principle of level dependent threshold to Wavelet Packet Thresholding. This technique does not require an explicit estimation of the noise level or of the apriori knowledge of the SNR, as is usually needed in most of the popular enhancement methods. Performance of the proposed method is evaluated on speech recorded in real conditions (plane, sawmill, tank, subway, babble, car, exhibition hall, restaurant, street, airport, and train station) and artificially added noise. MELscale decomposition based on wavelet packets is also compared to the common wavelet packet scale. Comparison in terms of Signal-to-Noise Ratio (SNR) is reported for time adaptation and time-scale adaptation thresholding of the wavelet coefficients thresholding. Visual inspection of spectrograms and listening experiments are also used to support the results. Hidden Markov Models Speech recognition experiments are conducted on the AURORA–2 database and show that the proposed method improves the speech recognition rates for low SNRs

    An improved higher-order analytical energy operator with adaptive local iterative filtering for early fault diagnosis of bearings

    Get PDF
    Early fault diagnosis in rolling bearings is crucial to maintenance and safety in industry. To highlight the weak fault features from complex signals combined with multiple interferences and heavy background noise, a novel approach for bearing fault diagnosis based on higher-order analytic energy operator (HO-AEO) and adaptive local iterative filtering (ALIF) is put forward. HO-AEO has better effect in dealing with heavy noise. However, it is subjected to the limitation of mono-components. To solve this limitation, ALIF is adopted firstly to decompose the nonlinear, non-stationary signals into multiple mono-components adaptively. In the next, the resonance frequency band as the optimal intrinsic mode function (IMF) is selected according to the maximum kurtosis. In the following, HO-AEO is utilized to highlight weak fault characteristics of the selected IMF. Finally, the early bearing fault is diagnosed by the energy operator spectrum based on fast Fourier transform (FFT). Comparisons in the simulation indicate that the fourth order HO-AEO shows the best performance in fault diagnosis compared with Teager energy operator (TEO), analytic energy operator (AEO), the second and the third order HO-AEO. The simulated test and experimental results demonstrate that the proposed approach could effectively extract weak fault characteristics from contaminated vibration signals

    Speech enhancement by perceptual adaptive wavelet de-noising

    Get PDF
    This thesis work summarizes and compares the existing wavelet de-noising methods. Most popular methods of wavelet transform, adaptive thresholding, and musical noise suppression have been analyzed theoretically and evaluated through Matlab simulation. Based on the above work, a new speech enhancement system using adaptive wavelet de-noising is proposed. Each step of the standard wavelet thresholding is improved by optimized adaptive algorithms. The Quantile based adaptive noise estimate and the posteriori SNR based threshold adjuster are compensatory to each other. The combination of them integrates the advantages of these two approaches and balances the effects of noise removal and speech preservation. In order to improve the final perceptual quality, an innovative musical noise analysis and smoothing algorithm and a Teager Energy Operator based silent segment smoothing module are also introduced into the system. The experimental results have demonstrated the capability of the proposed system in both stationary and non-stationary noise environments

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically
    • …
    corecore