965 research outputs found

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction

    Advanced Human Activity Recognition through Data Augmentation and Feature Concatenation of Micro-Doppler Signatures

    Get PDF
    Developing accurate classification models for radar-based Human Activity Recognition (HAR), capable of solving real-world problems, depends heavily on the amount of available data. In this paper, we propose a simple, effective, and generalizable data augmentation strategy along with preprocessing for micro-Doppler signatures to enhance recognition performance. By leveraging the decomposition properties of the Discrete Wavelet Transform (DWT), new samples are generated with distinct characteristics that do not overlap with those of the original samples. The micro-Doppler signatures are projected onto the DWT space for the decomposition process using the Haar wavelet. The returned decomposition components are used in different configurations to generate new data. Three new samples are obtained from a single spectrogram, which increases the amount of training data without creating duplicates. Next, the augmented samples are processed using the Sobel filter. This step allows each sample to be expanded into three representations, including the gradient in the x-direction (Dx), y-direction (Dy), and both x- and y-directions (Dxy). These representations are used as input for training a three-input convolutional neural network-long short-term memory support vector machine (CNN-LSTM-SVM) model. We have assessed the feasibility of our solution by evaluating it on three datasets containing micro-Doppler signatures of human activities, including Frequency Modulated Continuous Wave (FMCW) 77 GHz, FMCW 24 GHz, and Impulse Radio Ultra-Wide Band (IR-UWB) 10 GHz datasets. Several experiments have been carried out to evaluate the model\u27s performance with the inclusion of additional samples. The model was trained from scratch only on the augmented samples and tested on the original samples. Our augmentation approach has been thoroughly evaluated using various metrics, including accuracy, precision, recall, and F1-score. The results demonstrate a substantial improvement in the recognition rate and effectively alleviate the overfitting effect. Accuracies of 96.47%, 94.27%, and 98.18% are obtained for the FMCW 77 GHz, FMCW 24 GHz, and IR- UWB 10 GHz datasets, respectively. The findings of the study demonstrate the utility of DWT to enrich micro-Doppler training samples to improve HAR performance. Furthermore, the processing step was found to be efficient in enhancing the classification accuracy, achieving 96.78%, 96.32%, and 100% for the FMCW 77 GHz, FMCW 24 GHz, and IR-UWB 10 GHz datasets, respectively

    A Framework for Vision-based Static Hand Gesture Recognition

    Get PDF
    In today’s technical world, the intellectual computing of a efficient human-computer interaction (HCI) or human alternative and augmentative communication (HAAC) is essential in our lives. Hand gesture recognition is one of the most important techniques that can be used to build up a gesture based interface system for HCI or HAAC application. Therefore, suitable development of gesture recognition method is necessary to design advance hand gesture recognition system for successful applications like robotics, assistive systems, sign language communication, virtual reality etc. However, the variation of illumination, rotation, position and size of gesture images, efficient feature representation, and classification are the main challenges towards the development of a real time gesture recognition system. The aim of this work is to develop a framework for vision based static hand gesture recognition which overcomes the challenges of illumination, rotation, size and position variation of the gesture images. In general, a framework for gesture recognition system which consists of preprocessing, feature extraction, feature selection, and classification stages is developed in this thesis work. The preprocessing stage involves the following sub-stages: image enhancement which enhances the image by compensating illumination variation; segmentation, which segments hand region from its background image and transforms it into binary silhouette; image rotation that makes the segmented gesture as rotation invariant; filtering that effectively removes background noise and object noise from binary image and provides a well defined segmented hand gesture. This work proposes an image rotation technique by coinciding the first principal component of the segmented hand gesture with vertical axes to make it as rotation invariant. In the feature extraction stage, this work extracts xi localized contour sequence (LCS) and block based features, and proposes a combined feature set by appending LCS features with block-based features to represent static hand gesture images. A discrete wavelets transform (DWT) and Fisher ratio (F-ratio) based feature set is also proposed for better representation of static hand gesture image. To extract this feature set, DWT is applied on resized and enhanced grayscale image and then the important DWT coefficient matrices are selected as features using proposed F-ratio based coefficient matrices selection technique. In sequel, a modified radial basis function neural network (RBF-NN) classifier based on k-mean and least mean square (LMS) algorithms is proposed in this work. In the proposed RBF-NN classifier, the centers are automatically selected using k-means algorithm and estimated weight matrix is updated utilizing LMS algorithm for better recognition of hand gesture images. A sigmoidal activation function based RBF-NN classifier is also proposed here for further improvement of recognition performance. The activation function of the proposed RBF-NN classifier is formed using a set of composite sigmoidal functions. Finally, the extracted features are applied as input to the classifier to recognize the class of static hand gesture images. Subsequently, a feature vector optimization technique based on genetic algorithm (GA) is also proposed to remove the redundant and irrelevant features. The proposed algorithms are tested on three static hand gesture databases which include grayscale images with uniform background (Database I and Database II) and color images with non-uniform background (Database III). Database I is a repository database which consists of hand gesture images of 25 Danish/international sign language (D/ISL) hand alphabets. Database II and III are indigenously developed using VGA Logitech Webcam (C120) with 24 American Sign Language (ASL) hand alphabets

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    Hand gesture based digit recognition

    Get PDF
    Recognition of static hand gestures in our daily plays an important role in human-computer interaction. Hand gesture recognition has been a challenging task now a days so a lot of research topic has been going on due to its increased demands in human computer interaction. Since Hand gestures have been the most natural communication medium among human being, so this facilitate efficient human computer interaction in many electronics gazettes . This has led us to take up this task of hand gesture recognition. In this project different hand gestures are recognized and no of fingers are counted. Recognition process involve steps like feature extraction, features reduction and classification. To make the recognition process robust against varying illumination we used lighting compensation method along with YCbCr model. Gabor filter has been used for feature extraction because of its special mathematical properties. Gabor based feature vectors have high dimension so in our project 15 local gabor filters are used instead of 40 Gabor filters. The objective in using fifteen Gabor filters is used to mitigate the complexity with improved accuracy. In this project the problem of high dimensionality of feature vector is being solved by using PCA. Using local Gabor filter helps in reduction of data redundancy as compared to that of 40 filters. Classification of the 5 different gestures is done with the use of one against all multiclass SVM which is also compared with Euclidean distance and cosine similarity while the former giving an accuracy of 90.86%

    Improving Human Face Recognition Using Deep Learning Based Image Registration And Multi-Classifier Approaches

    Get PDF
    Face detection, registration, and recognition have become a fascinating field for researchers. The motivation behind the enormous interest in the topic is the need to improve the accuracy of many real-time applications. Countless methodologies have been acknowledged and presented in the past years. The complexity of the human face visual and the significant changes based on different effects make it more challenging to design as well as implementing a powerful computational system for object recognition in addition to human face recognition. Using supervised learning often requires extensive training for the computer which results in high execution times. It is an essential step in the face recognition to apply strong preprocessing approaches such as face registration to achieve a high recognition accuracy rate. Although there are exist approaches do both detection and recognition, we believe the absence of a complete end-to-end system capable of performing recognition from an arbitrary scene is in large part due to the difficulty in alignment. Often, the face registration is ignored, with the assumption that the detector will perform a rough alignment, leading to suboptimal recognition performance. In this research, we presented an enhanced approach to improve human face recognition using a back-propagation neural network (BPNN) and features extraction based on the correlation between the training images. A key contribution of this paper is the generation of a new set called the T-Dataset from the original training data set, which is used to train the BPNN. We generated the T-Dataset using the correlation between the training images without using a common technique of image density. The correlated T-Dataset provides a high distinction layer between the training images, which helps the BPNN to converge faster and achieve better accuracy. Data and features reduction is essential in the face recognition process, and researchers have recently focused on the modern neural network. Therefore, we used using a classical conventional Principal Component Analysis (PCA) and Local Binary Patterns (LBP) to prove that there is a potential improvement even using traditional methods. We applied five distance measurement algorithms and then combined them to obtain the T-Dataset, which we fed into the BPNN. We achieved higher face recognition accuracy with less computational cost compared with the current approach by using reduced image features. We test the proposed framework on two small data sets, the YALE and AT&T data sets, as the ground truth. We achieved tremendous accuracy. Furthermore, we evaluate our method on one of the state-of-the-art benchmark data sets, Labeled Faces in the Wild (LFW), where we produce a competitive face recognition performance. In addition, we presented an enhanced framework to improve the face registration using deep learning model. We used deep architectures such as VGG16 and VGG19 to train our method. We trained our model to learn the transformation parameters (Rotation, scaling, and shifting). By leaning the transformation parameters, we will able to transfer the image back to the frontal domain. We used the LFW dataset to evaluate our method, and we achieve high accuracy
    corecore