64 research outputs found

    Examining the Ability of an FSO Receiver to Simultaneously Communicate with Multiple Transmitters

    Get PDF
    FSO (Free-Space Optical)-based communication systems experience difficulty with receiving and separating signals arising from multiple transmitters, a capability that would facilitate implementation of MIMO (Multiple-In, Multiple-Out) systems. Current implementations require multiple, distinct optical antennas, each tracking a single user, which proves bulky and costly, especially if the transmitters are moving and must be tracked. A fiber-bundle receiver has the potential to use multiple pathways, corresponding to the individual fibers within the receiver, to capture different combinations of the incoming optical signals. If the bundle provides linear combining of the optical signals from both the individual fibers in the bundle and amongst the incoming optical signals, signal processing could extract the individual signals from the combinations. In this paper, we experimentally investigate whether the fiber-bundle receiver possesses sufficient linearity of operation to allow the separation of two signals by simple processing algorithms, for both turbulent and non-turbulent conditions. Data from two distinct sources enters a single-bundle, single field of view receiver, and a basis signal from one transmitter provides the reference for performing simple subtraction-based extraction of the unknown signal from the other transmitter. The experimental results show that the receiver does operate linearly, and that the linear operation remains sufficiently intact in the presence of turbulence to extract a recognizable copy of one signal from the other. The ability of the fiber bundle receiver to mitigate turbulence effects appears to assist in maintaining this sufficient level of linearity

    WIRELESS OPTICAL TRANSCEIVER DESIGN, LINK ANALISYS AND ALIGNMENT CONTROL FOR MOBILE COMMUNICATION

    Get PDF
    Pointing, acquisition and tracking of a free-space optical node in a mobile network experiencing misalignment due to adverse factors including vibration, motion and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. A recent fiber-bundle approach for beam steering at the transmitter was investigated to provide continuous beam coverage at the receiver without the application of mechanical devices. Utilizing multiple fibers-lenses sets at the receiver was also proposed to enhance the tolerance of optical link misalignment. In this work, both laboratory experiments and software simulation were implemented to evaluate the optical link performance for different fiber-bundle-based transceiver setups as the link parameters were varied. The performance was evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The results showed that fiber-bindle-based transceivers reveal significant potential to maximize the up time of the link, and the results also provide guidance on the further development of the overall system. To incorporate the proposed transceiver designs, an alignment control system was developed and evaluated as well. The laboratory results show that the optical control system successfully recovered and maintained the link while the receiver was in motion and the signal coverage at the target area was enhanced significantly

    Měření vlivu kapek pro optický bezvlaknový spoj a matematické modelování vícefázového proudění

    Get PDF
    Free space optics will emerge alongside major communications technologies as an important player in the field of wireless communications. This technology, like other technologies, has to face the challenges caused by unstable and unfavorable atmospheric conditions that determine the resulting quality of the transmitted signal. The paper is intended to determine the extent of a deterioration of the transmitted signal during rainfall. The precipitation is simulated in laboratory conditions, and the resulting knowledge of the droplet formation is transferred to a mathematical model that helps simulate multiphase flow under given conditions.Optické bezvláknové spoje se v budoucnosti vyskytnou po boku majoritních komunikačních technologií jako důležitý hráč na poli bezdrátových komunikací. Tato technologie, stejně jako jiné technologie, musí čelit výzvám pramenícím z nestálých a nepříznivých atmosférických podmínek, které rozhodují o výsledné kvalitě přenášeného signálu. Tato práce má za úkol zjistit míru zhoršení přenášeného signálu během dešťových srážek. Srážkový úhrn je simulován v laboratorních podmínkách a výsledné poznatky o tvorbě dešťových kapek jsou přeneseny do matematického modelu, který napomáhá simulování vícefázového proudění v daných podmínkách.440 - Katedra telekomunikační technikyvýborn

    COGNITIVE MULTI-USER FREE SPACE OPTICAL COMMUNICATION

    Get PDF
    Increasing deployment of terrestrial, aerial, and space-based assets designed with more demanding services and applications is dramatically escalating the need for high capacity, high data-rate, adaptive, and flexible communication networks. Cognitive, multi-user Free Space Optical Communication (FSOC) networks provide a solution to address these challenges. Such FSOC networks can potentially merge automation and intelligence, as well as offer the benefits of optical communication with enhanced bandwidth and data-rate over long communication networks. Extensive research has investigated various designs, techniques, and methods to enable desired FSOC systems. This dissertation reports the investigation and analysis of novel, state-of-the-art methodologies and algorithms for supporting cognitive, multi-user FSOC. This work details an investigation of the ability of diverse Optical-Multiple Access Control (O-MAC) techniques for performing multi-point communication. Independent Component Analysis (ICA) and Non-Orthogonal Multiple Access (NOMA) techniques were experimentally validated, both singularly and in a combined approach, in a high-speed FSOC link. These methods proved to successfully support multi-user FSOC when users share allocation resources (e.g., time, bandwidth, and space, among others). Additionally, transmission and channel parameters that can affect signal reconstruction performance were identified. To introduce cognition and flexibility into the network, the research reported herein details the use of several Machine Learning (ML) algorithms for estimating crucial parameters at the Physical Layer (PHY) of FSOC networks (e.g., number of transmitting users, modulation format, and quality of transmission [QoT]) for automatically supporting and decoding multiple users. In particular, a novel methodology based on a weighted clustering analysis for automatic and blind user discovery is presented in this work. Extensive experimental analysis was conducted under multiple communication scenarios to identify system performance and limitations. Experimental results demonstrated the ability of the proposed techniques to successfully estimate parameters of interest with high accuracy. Finally, this dissertation presents the design and testing of a modular, multiple node, high-speed, real-time Optical Wireless Communication (OWC) testbed, which provides a hardware and software platform for testing proposed methods and for further research development. This dissertation successfully proves the feasibility of cognitive, multi-user FSOC through the developed and presented methodologies, as well as extensive experimental analyses. The main strength of the research outcomes of this work consists of exploiting software solutions (e.g., O-MAC, signal processing, and ML techniques) to intelligently support multiple users into a single optical channel (i.e., same allocation resources). Accordingly, Size, Weight and Power (SWaP) requirement can be reduced while achieving an increased network capacity

    Broadband optical wireless communications for the teleoperation of mining equipment

    Get PDF
    The current level of technological advancement of our civilization serving more than seven billion human population requires new sources of biotic and abiotic natural resources. The depletion and scarcity of high-grade mineral deposits in dry land are forcing the Natural Re- sources industry to look for alternate sources in underwater environments and outer space, requiring the creation of reliable broadband omnidirectional wireless communication systems that allows the teleoperation of exploration and production equipment. Within these ob- jectives, Optical Wireless Communications (OWC) are starting to be used as an alternative or complement to standard radio systems, due to important advantages that optical wave- lengths have to transmit data: potential for Terabit/s bit rates, broadband operation in underwater environments, energy e ciency and better protection against interference and eavesdropping. This research focus in two crucial design aspects required to implement broadband OWC systems for the teleoperation of mining equipment: high bandwidth wide beam photon emission and low noise omnidirectional Free-Space Optical (FSO) receivers. Novel OWC omnidirectional receivers using guided wavelength-shifting photon concentra- tion are experimented in over 100 meters range vehicle teleoperation.Master of Science (MSc) in Natural Resources Engineerin

    Camera Based Localization for Indoor Optical Wireless Networks

    Get PDF
    The main focus of this work is to implement device localization in an indoor communication network which employs short range Optical Wireless Communication (OWC) using pencil beams. OWC is becoming increasingly important as a solution to the shortage of available radio spectrum. In order to counter this problem, a radical new approach is proposed by performing wireless communication using optical rather than radio techniques, by deploying optical pencil beam technologies to provide users with access to an indoor optical fiber infrastructure. An architecture based on free-space optics has been adopted. The narrow infrared beam is considered a good solution because of its ability to optimally carry all the information which the optical fiber can transport, in an energy-efficient way. Beam Steered - Infrared Light Communication (BS-ILC) brings the light only where is needed. Multiple beams may independently serve user devices within a room, hence each device can get a non-shared capacity without conflicts with other devices. Infrared light beams, additionally, are allowed to be operated at a higher power than visible light beams, due to a higher eye safety threshold for infrared light. Together with the directivity of a beam, this implies that the received signal-to-noise ratio with BS-ILC can be substantially higher than with Visible Light Communication (VLC), enabling a higher data rate and longer reach at better power efficiency. Current BS-ILC prototypes allow multiple beams with over 100 Gbit/s per beam. This high performance can only be achieved with small footprints, hence the system needs to know the exact location of user devices. In this thesis, an accurate and fast localization/tracking technique using a low-cost camera and simple image processing is presented

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF

    Free Space Optical Communications with High Intensity Laser Power Beaming

    Get PDF
    This research demonstrates the feasibility of utilizing high intensity laser power beaming (HILPB) systems as a conduit for robust free-space optical communications over large distances and in challenging atmospheric conditions. The uniqueness of vertical multi-junction (VMJ) photovoltaic cells used in HILPB systems in their ability to receive and to convert at high efficiency, very high intensity laser light of over 200 W/cm2, presents a unique opportunity for the development of the robust free space optical communication system by modulating information signals onto the transmitted high intensity photonic energy. Experiments were conducted to investigate and validate several optical communications concepts. A laser modulator was implemented to exhibit the excellent transient response of the VMJ technology at very high illumination intensities, and thus show its applicability to optical communications. In addition, beam polarization optic stages were employed to demonstrate a secure multi-channel communications scheme. The off-axis response of the receiver and the beam profile were characterized in order to evaluate the feasibility of developing acceptable pointing and tracking geometries. Finally, the impact of signal modulation on the total converted energy was evaluated and shown to have minimal effect on the overall power transmission efficiency. Other aspects of the proposed communication system are studied including: quantifying beamwidth and directivity, signal-to-noise-ratio, information bandwidth, privacy, modulation and detection schemes, transmission channel attenuation and disturbances (atmospheric turbulence, scintillation from index of refraction fluctuations, absorption and scattering from thermal and moisture variation) and beam acquisition tracking and pointing influence on the performance metrics of optical transmission technologies. The result of this research demonstrates the feasibility of, and serves as a comprehensive design guide for the implementation of a HILPB communication system. S
    corecore