214 research outputs found

    Wavelength reconfigurability for next generation optical access networks

    Get PDF
    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONU). In this dissertation, I propose a novel concept named cyclic-linked flexibility to address the cost-prohibitive problem. By using the cyclic-linked flexibility, the ONU needs to switch only within a subset of two pre-planned wavelengths, however, the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. Rearrangement algorithm are developed to demonstrate that the cyclic-linked flexibility performs close to the fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, the evaluation shows that the rearrangement process has a minimum impact to in-service ONUs. To realize the cyclic-linked flexibility, a family of four physical architectures is proposed. PRO-Access architecture is suitable for new deployments and disruptive upgrades in which the network reach is not longer than 20 km. WCL-Access architecture is suitable for metro-access merger with the reach up to 100 km. PSB-Access architecture is suitable to implement directly on power-splitter-based PON deployments, which allows coexistence with current technologies. The cyclically-linked protection architecture can be used with current and future PON standards when network protection is required

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Effect Of Reconfiguration On Ip Packet Traffic In Wdm Networks

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Günümüzde iletişim ağlarına erişen insan sayısı ve iletişim uygulamalarının ihtiyaç duyduğu band genişliği ihtiyacı hızla artmaya devam etmektedir. Artan trafik istekleri daha geniş band genişliği kullanımına olanak verebilen optik iletişim ağlarının tasarımını tetiklemektedir. Bir veya daha fazla sayıda optik fiberi kapsayabilen bir ışıkyolu alt katmanda yer alan optik altyapının üzerinde iletişim kanalları sağlamaktadır. Sanal topoloji tasarımı, verilen bir trafik matrisine göre bir grup ışık yolunun kurulması olarak tanımlanabilir. Trafikte meydana gelecek bir değişiklik yeniden konfigürasyon kararının alınmasına neden olabilir. Sanal topoloji yeniden konfigürasyonu, hem yeni sanal topolojinin belirlenmesini hem de bu yeni topolojiye geçişi içermektedir. Bu tez çalışmasında IP/WDM ağlarda sanal topoloji yeniden konfigürasyonunun IP paket trafiği üzerindeki etkileri incelenmiştir. Çalışma kapsamında, çeşitli yeniden kofigürasyon algoritmaları gerçeklenmiş ve Fishnet tabanlı bir IP simülatörü üzerinde test edilmiştir. Gerçeklenen sanal topoloji tasarım algoritmalarına ait paket gecikmeleri/kayıpları incelenmiş ve algoritmaların başarımları karşılaştırılmıştır.Today, both the amount of people accessing communication networks and new communication applications which require high data transfer rates are exponentially increasing. Growing traffic demands triggered the design of optical communication networks which will be able to provide larger bandwidth utilization. A lightpath, which can span multiple fiber links, provides communication channels over the underlying optical communication infrastructure. Virtual Topology Design (VTD) means establishment of a set of lightpaths under a given traffic pattern. A change in traffic pattern may trigger reconfiguration decision. Virtual Topology Reconfiguration (VTR) contains determination of a new virtual topology and migration between the old and new virtual topologies. In this thesis, the effects of virtual topology reconfiguration on Internet Protocol (IP) packet traffic on IP over WDM networks were studied. Various reconfiguration algorithms were implemented and tested on a Fishnet based IP simulator. Packet delays/losses are investigated during reconfiguration procedure for performance comparison of implemented reconfiguration algorithms.Yüksek LisansM.Sc

    A QoS-Aware Dynamic Bandwidth Allocation algorithm for passive optical networks with non-zero laser tuning time

    Get PDF
    The deployment of new 5G services and future demands for 6G make it necessary to increase the performance of access networks. This challenge has prompted the development of new standardization proposals for Passive Optical access Networks (PONs) that offer greater bandwidth, greater reach and a higher rate of aggregation of users per fiber, being Time- and Wavelength-Division Multiplexing (TWDM) a promising technological solution for increasing the capacity by up to 40 Gbps by using several wavelengths. This solution introduces tunable transceivers into the Optical Network Units (ONUs) for switching from one wavelength to the other, thus addressing the ever-increasing bandwidth demands in residential broadband and mobile fronthaul networks based on Fiber to the Home (FTTH) technology. This adds complexity and sources of inefficiency, such as the laser tuning time (LTT) delay, which is often ignored when evaluating the performance of Dynamic Bandwidth Allocation (DBA) mechanisms. We present a novel DBA algorithm that dynamically handles the allocation of bandwidth and switches the ONUs’ lasers from one wavelength to the other while taking LTT into consideration. To optimize the packet delay, we introduce a scheduling mechanism that follows the Longest Processing Time first (LPT) scheduling discipline, which is implemented over the Interleaved Polling with Adaptive Cycle Time (IPACT) DBA. We also provide quality of service (QoS) differentiation by introducing the Max-Min Weighted Fair Share Queuing principle (WFQ) into the algorithm. The performance of our algorithm is evaluated through simulations against the original IPACT algorithm, which we have extended to support multi-wavelengths. With the introduction of LPT, we obtain an improved performance of up to 73% reduction in queue delay over IPACT while achieving QoS differentiation with WFQ.This work has been supported by the Agencia Estatal de Investigación of Spain under project PID2019‐108713RB‐C51/AEI/10.13039/501100011033.Peer ReviewedObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.1 - Desenvolupar infraestructures fiables, sostenibles, resilients i de qualitat, incloent infraestructures regionals i transfrontereres, per tal de donar suport al desenvolupament econòmic i al benestar humà, amb especial atenció a l’accés assequible i equitatiu per a totes les personesObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.4 - Per a 2030, modernitzar les infraestructures i reconvertir les indústries perquè siguin sostenibles, usant els recursos amb més eficàcia i promovent l’adopció de tecnologies i processos industrials nets i racionals ambiental­ment, i aconseguint que tots els països adoptin mesures d’acord amb les capacitats respectivesPostprint (published version

    Modular expansion and reconfiguration of shufflenets in multi-star implementations.

    Get PDF
    by Philip Pak-tung To.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 57-60).Chapter 1 --- Introduction --- p.1Chapter 2 --- Modular Expansion of ShuffleNet --- p.8Chapter 2.1 --- Multi-Star Implementation of ShuffleNet --- p.10Chapter 2.2 --- Modular Expansion of ShuffleNet --- p.21Chapter 2.2.1 --- Expansion Phase 1 --- p.21Chapter 2.2.2 --- Subsequent Expansion Phases --- p.24Chapter 2.3 --- Discussions --- p.26Chapter 3 --- Reconfigurability of ShuffleNet in Multi-Star Implementation --- p.33Chapter 3.1 --- Reconfigurability of ShuffleNet --- p.34Chapter 3.1.1 --- Definitions --- p.34Chapter 3.1.2 --- Rearrangable Conditions --- p.35Chapter 3.1.3 --- Formal Representation --- p.38Chapter 3.2 --- Maximizing Network Reconfigurability --- p.40Chapter 3.2.1 --- Rules to maximize Tsc and Rsc --- p.41Chapter 3.2.2 --- Rules to Maximize Z --- p.42Chapter 3.3 --- Channels Assignment Algorithms --- p.43Chapter 3.3.1 --- Channels Assignment Algorithm for w = p --- p.45Chapter 3.3.2 --- Channels Assignment Algorithm for w = p. k --- p.46Chapter 3.3.3 --- Channels Assignment Algorithm for w=Mpk --- p.49Chapter 3.4 --- Discussions --- p.51Chapter 4 --- Conclusions --- p.5
    corecore