47 research outputs found

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide

    Performance modeling and prototyping of directional radio link for moving machines

    Get PDF
    Usage of smart devices and the amount of mobile data traffic have grown exponentially in the past decade. Also, novel applications have specific bandwidth and latency requirements. All of these combined are calling for a new networking technology. Upcoming 5G wireless networks aim to answer the current and potential future needs of wireless technology. In the context of the implementation and development challenges, we can highlight two important use cases of 5G: Enhanced Mobile Broadband, which promises high data rate with low latency during rush hour, and Machine-Type-Communication, where wireless devices can communicate with each other in a fully automated manner with no need for human interaction. Concerning the first use case, this work has focused on evaluating the core performance metrics, including throughput and Signal-to-Interference plus Noise Ratio (SINR), of suggested radio technology for 5G (mmWave) in a dense urban deployment. In this work, additional Unmanned Aerial Vehicle (UAV)-assisted Access Points (APs) are considered to provide extra coverage. For this reason, a number of appropriate scenarios were simulated and evaluated using NS-3 platform. Regarding the second use case, this work has focused on enabling high-speed long-range communication specifically used in autonomous robotic off-shore operations and modeling the performance of such systems in terms of throughput and Received Signal Strength (RSS). For this purpose, a system of directional radio links utilizing IEEE 802.11 Wi-Fi and 3GPP LTE was designed, installed and tested on an autonomous boat to enable a high-speed bi-directional connection. This thesis describes the details of these research directions along with obtained results

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    Towards optical beamforming systems on-chip for millimeter wave wireless communications

    Get PDF

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    The Detector System of the KATRIN Experiment - Implementation and First Measurements with the Spectrometer

    Get PDF
    This thesis describes work performed in the context of the Karlsruhe Tritium Neutrino (KATRIN) experiment which is targeted to determine the absolute neutrino-mass scale with an unrivaled sensitivity of 200 meV (90% C.L.). With respect to the challenges faced by the KATRIN spectrometer and detector section, the main objectives of this thesis are to install, to commission and to characterize the detector system as well as to examine spectrometer-related and detector-based backgrounds

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries
    corecore