97 research outputs found

    MIMO radar space–time adaptive processing using prolate spheroidal wave functions

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space–time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity

    Multi-Spectrally Constrained Low-PAPR Waveform Optimization for MIMO Radar Space-Time Adaptive Processing

    Full text link
    This paper focuses on the joint design of transmit waveforms and receive filters for airborne multiple-input-multiple-output (MIMO) radar systems in spectrally crowded environments. The purpose is to maximize the output signal-to-interference-plus-noise-ratio (SINR) in the presence of signal-dependent clutter. To improve the practicability of the radar waveforms, both a multi-spectral constraint and a peak-to-average-power ratio (PAPR) constraint are imposed. A cyclic method is derived to iteratively optimize the transmit waveforms and receive filters. In particular, to tackle the encountered non-convex constrained fractional programming in designing the waveforms (for fixed filters), we resort to the Dinkelbach's transform, minorization-maximization (MM), and leverage the alternating direction method of multipliers (ADMM). We highlight that the proposed algorithm can iterate from an infeasible initial point and the waveforms at convergence not only satisfy the stringent constraints, but also attain superior performance

    Radar Signal Processing for Interference Mitigation

    Get PDF
    It is necessary for radars to suppress interferences to near the noise level to achieve the best performance in target detection and measurements. In this dissertation work, innovative signal processing approaches are proposed to effectively mitigate two of the most common types of interferences: jammers and clutter. Two types of radar systems are considered for developing new signal processing algorithms: phased-array radar and multiple-input multiple-output (MIMO) radar. For phased-array radar, an innovative target-clutter feature-based recognition approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target detection algorithm is proposed for airborne radar. The essence of this algorithm is to compensate for the ground clutter Doppler shift caused by the moving platform and then to cancel the Doppler-compensated clutter using MTI filters that are commonly used in ground-based radar systems. Without the need of clutter estimation, the new algorithms outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in ground moving target detection in inhomogeneous clutter. For MIMO radar, a time-efficient reduced-dimensional clutter suppression algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is proposed to minimize the number of the training samples required for clutter estimation. To deal with highly heterogeneous clutter more effectively, we also proposed a robust deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling jammers in the radar mainlobe direction, an innovative jamming elimination approach is proposed based on coherent MIMO radar adaptive beamforming. When combined with mutual information (MI) based cognitive radar transmit waveform design, this new approach can be used to enable spectrum sharing effectively between radar and wireless communication systems. The proposed interference mitigation approaches are validated by carrying out simulations for typical radar operation scenarios. The advantages of the proposed interference mitigation methods over the existing signal processing techniques are demonstrated both analytically and empirically

    A Subspace Method for MIMO Radar Space-Time Adaptive Processing

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the MIMO radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted by a matched interbank. The extracted signals can be used to obtain more diversity or improve the clutter resolution. In this paper, we focus on space-time adaptive processing (STAP) for MIMO radar systems which improves the clutter resolution. With a slight modification, STAP methods for the SIMO radar case can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP. In this paper, a new subspace method is proposed. It computes the clutter subspace using the geometry of the problem rather than data and utilizes the block diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method is very effective for STAP in MIMO radar

    Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection

    Get PDF
    Suppressing the main-beam deceptive jamming in traditional radar systems is challenging. Furthermore, the observations corrupted by false targets generated by smart deceptive jammers, which are not independent and identically distributed because of the pseudo-random time delay. This in turn complicates the task of jamming suppression. In this paper, a new main-beam deceptive jamming suppression approach is proposed, using nonhomogeneous sample detection in the frequency diverse array-multiple-input and multiple-output radar with non-perfectly orthogonal waveforms. First, according to the time delay or range difference, the true and false targets are discriminated in the joint transmit-receive spatial frequency domain. Subsequently, due to the range mismatch, the false targets are suppressed through a transmit-receive 2-D matched filter. In particular, in order to obtain the jamming-plus-noise covariance matrix with high accuracy, a nonhomogeneous sample detection method is developed. Simulation results are provided to demonstrate the detection performance of the proposed approach

    Beamforming issues in modern MIMO Radars with Doppler

    Get PDF
    In traditional beamforming radar systems, the transmitting antennas send coherent waveforms which form a highly focused beam. In the MIMO radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omni-directional) waveforms. These waveforms can be extracted by a matched filterbank at the receiver. The extracted signals can be used to obtain more diversity or improve the clutter resolution. This paper focuses on space-time adaptive processing (STAP) for MlMO radar systems which improves the clutter resolution. The size of the MIMO STAP steering vector can be much larger than the traditional SIMO STAP steering vector because of the extra dimension. An accurate estimation of clutter rank for the subspace method is developed, and is a generalization of Brennan's rule to the MIMO radar case. A data independent method for estimating the clutter subspace is also described
    • …
    corecore