899 research outputs found

    OFDM Synthetic Aperture Radar Imaging with Sufficient Cyclic Prefix

    Full text link
    The existing linear frequency modulated (LFM) (or step frequency) and random noise synthetic aperture radar (SAR) systems may correspond to the frequency hopping (FH) and direct sequence (DS) spread spectrum systems in the past second and third generation wireless communications. Similar to the current and future wireless communications generations, in this paper, we propose OFDM SAR imaging, where a sufficient cyclic prefix (CP) is added to each OFDM pulse. The sufficient CP insertion converts an inter-symbol interference (ISI) channel from multipaths into multiple ISI-free subchannels as the key in a wireless communications system, and analogously, it provides an inter-range-cell interference (IRCI) free (high range resolution) SAR image in a SAR system. The sufficient CP insertion along with our newly proposed SAR imaging algorithm particularly for the OFDM signals also differentiates this paper from all the existing studies in the literature on OFDM radar signal processing. Simulation results are presented to illustrate the high range resolution performance of our proposed CP based OFDM SAR imaging algorithm.Comment: This version has been accepted by IEEE Transactions on Geoscience and Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing 201

    Orthogonal Frequency Division Multiplexed Waveform Effects on Passive Bistatic Radar

    Get PDF
    Communication waveforms act as signals of opportunity for passive radars. However, these signals of opportunity suffer from range-Doppler processing losses due to their high range sidelobes and pulse-diverse waveform aspects. Signals such as the long term evolution (LTE) encode information within the phase and amplitude of the waveform. This research explores aspects of the LTE, such as the encoding scheme and bandwidth modes on passive bistatic Doppler radar. Signal space-time adaptive processing (STAP) performance is evaluated and parameters are compared with the signal to interference-plus-noise ratio (SINR) metric

    WiFi-based PCL for monitoring private airfields

    Get PDF
    In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas

    Short-range passive radar for small private airports surveillance

    Get PDF
    This paper investigates the effectiveness of a passive radar for enhancing the security level in small airports and private runways. Specifically WiFi transmissions are parasitically exploited to perform detection and localization of non-cooperative targets that can be occupying the runway and the surrounding areas. Targets of interest include light/ultralight aircrafts, vehicles, people and even animals that may intrude onto the runways either intentionally or accidentally. The experimental results obtained by means of an experimental setup developed at SAPIENZA University of Rome prove the successful applicability of the proposed approach for small airports surveillance. © 2016 EuMA

    Effects of Long-Term Evolution Waveform on Synthetic Aperture Radar Image Quality Metrics

    Get PDF
    As a greater demand by the private sector for bandwidth drives spectrum allocations away from defense, new methods for coexistence in the spectrum are being explored. One of the prominent areas in defense for this coexistence is passive radar. This mode of radar system allows for data collection by referencing signals already established in the environment of interest. Some of the most prolific signals currently available are those used for mobile communication networks. In particular, Long- Term Evolution (LTE) is a common waveform that could be leveraged for discrete collection of image intelligence. Seeking to build a base of knowledge, simulations of synthetic aperture radar (SAR) systems are carried out using the LTE framework. Variations in waveform content, structure, and signal components are established and used to generate point-spread function (PSF) responses characterizing the image do- main impacts of given fluctuations. Overall, PSF responses for most variations are highly similar, incurring slight losses as pulses contain varied data types and slight gains when maximizing the amount of user data contained in pulses. Notable side- lobes in range profiles occur at predictable intervals and may be easily managed for adequately-sized scenes. Peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) results show marginal improvement when pulses are varied over the aperture. Range and cross-range resolution, while remaining mostly unchanged throughout variations, are observed to be worse in simulation than is expected. The work presented here is meant to serve as a starting point of overall LTE characterization as a radar waveform and establish basic metrics of comparison for future efforts

    Full-Duplex OFDM Radar With LTE and 5G NR Waveforms: Challenges, Solutions, and Measurements

    Get PDF
    This paper studies the processing principles, implementation challenges, and performance of OFDM-based radars, with particular focus on the fourth-generation Long-Term Evolution (LTE) and fifth-generation (5G) New Radio (NR) mobile networks' base stations and their utilization for radar/sensing purposes. First, we address the problem stemming from the unused subcarriers within the LTE and NR transmit signal passbands, and their impact on frequency-domain radar processing. Particularly, we formulate and adopt a computationally efficient interpolation approach to mitigate the effects of such empty subcarriers in the radar processing. We evaluate the target detection and the corresponding range and velocity estimation performance through computer simulations, and show that high-quality target detection as well as high-precision range and velocity estimation can be achieved. Especially 5G NR waveforms, through their impressive channel bandwidths and configurable subcarrier spacing, are shown to provide very good radar/sensing performance. Then, a fundamental implementation challenge of transmitter-receiver (TX-RX) isolation in OFDM radars is addressed, with specific emphasis on shared-antenna cases, where the TX-RX isolation challenges are the largest. It is confirmed that from the OFDM radar processing perspective, limited TX-RX isolation is primarily a concern in detection of static targets while moving targets are inherently more robust to transmitter self-interference. Properly tailored analog/RF and digital self-interference cancellation solutions for OFDM radars are also described and implemented, and shown through RF measurements to be key technical ingredients for practical deployments, particularly from static and slowly moving targets' point of view.Comment: Paper accepted by IEEE Transactions on Microwave Theory and Technique

    Cooperative Passive Coherent Location: A Promising 5G Service to Support Road Safety

    Full text link
    5G promises many new vertical service areas beyond simple communication and data transfer. We propose CPCL (cooperative passive coherent location), a distributed MIMO radar service, which can be offered by mobile radio network operators as a service for public user groups. CPCL comes as an inherent part of the radio network and takes advantage of the most important key features proposed for 5G. It extends the well-known idea of passive radar (also known as passive coherent location, PCL) by introducing cooperative principles. These range from cooperative, synchronous radio signaling, and MAC up to radar data fusion on sensor and scenario levels. By using software-defined radio and network paradigms, as well as real-time mobile edge computing facilities intended for 5G, CPCL promises to become a ubiquitous radar service which may be adaptive, reconfigurable, and perhaps cognitive. As CPCL makes double use of radio resources (both in terms of frequency bands and hardware), it can be considered a green technology. Although we introduce the CPCL idea from the viewpoint of vehicle-to-vehicle/infrastructure (V2X) communication, it can definitely also be applied to many other applications in industry, transport, logistics, and for safety and security applications
    • …
    corecore