290 research outputs found

    Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor

    Get PDF
    This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor

    Nonlinear ultrasonic evaluation of disorderedly clustered pitting damage using an in situ sensor network

    Get PDF
    Pervasive but insidious, pitting damage—from pitting corrosion in maritime structures through electrical pitting in bearings to debris cloud–induced pitting craters in spacecraft—is a typical modality of material degradation and lesion in engineering assets in harsh service environment. Pitting damage may feature hundreds of clustered, localized craters, cracks, and diverse microscopic defects (e.g. dislocation, micro-voids, and cracks) disorderedly scattered over a wide area. Targeting accurate, holistic evaluation of pitting damage (mainly the existence, location, and size of the pitted area), an insight into the generation of nonlinear features in guided ultrasonic waves (i.e. high-order harmonics) that are triggered by pitting damage, is achieved using a semi-analytical finite element approach, based on which a monotonic correlation between the nonlinear ultrasonic features and the holistic severity of pitting damage is established. With such correlation, a structural health monitoring framework is developed, in conjunction with the use of an in situ sensor network comprising miniaturized piezoelectric wafers, to characterize pitting damage accurately and monitor material deterioration progress continuously. The framework is experimentally validated, in which highly complex pitting damage in a space structure, engendered by a hypervelocity debris cloud, is evaluated precisely

    A Comprehensive Study Of Nonlinear Effects Of Coupling Materials In Ultrasound Infrared Imaging

    Get PDF
    Nondestructive Evaluation (NDE) is a multidisciplinary field of research, which is focused on the development of analysis and measurement technologies for the quantitative characterization of materials, components and structures. It is a key process used in product evaluation, troubleshooting for the quality assurance in industry. Sonic Infrared (IR) Imaging technology is a hybrid sensing and imaging technique, in which cracks in an object are caused to become visible in the infrared imaging through frictional heating associated with the application of a short pulse of low-frequency ultrasound. The technique uses pulses of ultrasonic excitation applied to a sample for a fraction of a second. The heating at the crack is then captured by calibrated infrared cameras using real-time video/digital imaging. It\u27s been demonstrated that this technique can detect surface and subsurface cracks, delaminations, and disbonds in metallic and composite materials successfully. As a promising NDE technique, ultrasonic Infrared Imaging technique has gain more attention from researchers and technicians in NDE community, it has been used in detecting cracks/defects in the automotive and aerospace industry for several years. The purpose of the research work is to comprehensively study the non-linear effect of coupling materials used in the technique, where a coupling material is a thin layered material that separates transducer and sample. In this research, a series of coupling materials are investigated, and a comprehensive analysis, using different engagement force or different pulse frequency on two commonly used aluminum samples with different geometries and structures are studied. The combination of vibration waveforms and IR images/signals is used as an analysis method for the comprehensive study. Correlation analysis between the acoustic and thermal energy in the crack is discussed, as well. The finite element analysis is used to predict the thermal-mechanical behavior of the cracks in the samples under different boundary conditions by using different coupling media, different loading force and pulse frequency. FEA results are validated with the test results side by side. It is verified that coupling material can play an important role in crack detection

    Simultaneous measurement for material parameters using self-mixing interferometry

    Get PDF
    Material related parameters such as Young’s modulus and internal friction are important for mechanical and material engineering. These parameters play key roles in the material performances. It has been a great interest to measure the value of these parameters. Traditional methods including tensile test, flexure test, and others are destructive methods often cause damages to specimen and have low accuracy. In recent years, the impulse excitation technique (IET), a non-destructive technique to determine Young’s modulus and internal friction of the material has attracted great attention. The detection system used for IET is normally microphone, accelerometer and so on. Selfmixing interferometry (SMI), an emerging sensing technique, which is non-destructive, non-contact, compact structure, and low-cost has been developed for high accuracy sensing applications, such as displacement, velocity and distance measurement and so on is suitable for the material related parameters measurement. A normal SMI system consists of a laser diode (LD) and a target to form the external cavity of the LD. When a portion of the light is reflected or backscattered to the laser cavity, leading to a modulated laser power of LD. This modulated laser power is referred as SMI signal, which carries the information of vibration of the target. In this thesis, a measurement method combining IET with SMI for material related parameters measurement is proposed. By applying wavelet transform onto the SMI signal, both resonant frequency and damping factor of the specimen vibration can be retrieved at the same time. Therefore, both Young’s modulus and internal friction of the specimen can be calculated simultaneously. The optical fibre is introduced to the system. With the installation of the optical fibre, the flexibility of the measurement is greatly improved. The measurement results show the feasibility for simultaneous measurement of material related parameters. A graphical user interface is designed to improve the user experience for the measurement

    Research on the ultrasonic testing of defect for LY12 aluminum alloy based on transmission wave in lamb wave

    Get PDF
    Aimed at the problem that the ultrasonic testing is applied in defect of LY12 aluminum alloy by using liquid or semi-solid coupling agent, transfer matrix method and gas-solid boundary conditions of ultrasonic wave propagation is used for establishing mathematic model in LY12 aluminum alloy, and this model is solved to obtain the propagation characteristic curve. When cut-off frequency is less than 2 MHz·mm, it has only S0 modal. The simulation result provides proper parameters for ultrasonic testing, in which the incidence angle is 30° and the center frequency is 1 MHz. The different circuit defect for LY12 aluminum alloy is made and detected, and time domain waveform is obtained. The experimental results show that the diameter of the defects has a little influence on the amplitude of the direct wave, defect wave amplitude decreases gradually with the increase of the defect diameter

    Air-solids flow measurement using electrostatic techniques

    Get PDF

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Measurement of natural frequency and mechanical damping of thin brass diaphragm by pulsed laser generated vibrations

    Get PDF
    Damped harmonic oscillator model based fitting of nanosecond pulsed laser induced amplitude variations of clamped vibrating circular plate is used to estimate the mechanical damping and natural frequency of the sample in current work. Laser Pulses of 50 mJ energy, 20 ns duration, and focused at a spot of 4 mm diameter at the center of the circular thin brass sheet of 100 µm thickness is used to generate vibrations in the target. Quadrature Michelson interferometer (QMI) with CW laser focused on the opposite side of the target surface is used to measure the amplitude of vibrations. Variations of fringe frequencies are identified in the frequency domain. Finite element based numerical modal analyses are also performed in ANSYS Workbench for the verification of experimental results for the same geometry and materials. Experimental frequencies of vibrations are found to match nearly 2 percent of FEM modes. Moreover, Elastic parameters are also found using the first two mode frequencies and a reasonable agreement is observed while comparing with the elastic parameter data of brass. Current work in itself is a unique attempt of getting mechanical parameters for the determination of elastic parameters in a single laser pulse impulse excited measurement for thin clamped targets
    • …
    corecore