36,882 research outputs found

    Wave-Shaped Round Functions and Primitive Groups

    Get PDF
    Round functions used as building blocks for iterated block ciphers, both in the case of Substitution-Permutation Networks and Feistel Networks, are often obtained as the composition of different layers which provide confusion and diffusion, and key additions. The bijectivity of any encryption function, crucial in order to make the decryption possible, is guaranteed by the use of invertible layers or by the Feistel structure. In this work a new family of ciphers, called wave ciphers, is introduced. In wave ciphers, round functions feature wave functions, which are vectorial Boolean functions obtained as the composition of non-invertible layers, where the confusion layer enlarges the message which returns to its original size after the diffusion layer is applied. This is motivated by the fact that relaxing the requirement that all the layers are invertible allows to consider more functions which are optimal with regard to non-linearity. In particular it allows to consider injective APN S-boxes. In order to guarantee efficient decryption we propose to use wave functions in Feistel Networks. With regard to security, the immunity from some group-theoretical attacks is investigated. In particular, it is shown how to avoid that the group generated by the round functions acts imprimitively, which represent a serious flaw for the cipher

    Wave-shaped round functions and primitive groups

    Get PDF
    Round functions used as building blocks for iterated block ciphers, both in the case of Substitution-Permutation Networks (SPN) and Feistel Networks (FN), are often obtained as the composition of different layers. The bijectivity of any encryption function is guaranteed by the use of invertible layers or by the Feistel structure. In this work a new family of ciphers, called wave ciphers, is introduced. In wave ciphers, round functions feature wave functions, which are vectorial Boolean functions obtained as the composition of non-invertible layers, where the confusion layer enlarges the message which returns to its original size after the diffusion layer is applied. Efficient decryption is guaranteed by the use of wave functions in FNs. It is shown how to avoid that the group generated by the round functions acts imprimitively, a serious flaw for the cipher. The primitivity is a consequence of a more general result, which reduce the problem of proving that a given FN generates a primitive group to proving that an SPN, directly related to the given FN, generates a primitive group. Finally, a concrete instance of real-world size wave cipher is proposed as an example, and its resistance against differential and linear cryptanalyses is also established.acceptedVersio

    Music from Vibrating Wallpaper

    Get PDF
    Wallpaper patterns have been shown to be decomposable into standing waves of plane vibrations [6]. Previously unexplored are the sounds that arise from these vibrations. The main result of this paper is that each wallpaper type (square, hexagonal, rectangular, generic) has its own distinctive family of pitches relative to a fundamental. We review the method to make wallpaper with wave functions and describe new musical scales for each type, including initial attempts to use the scales: a movie showing vibrations of wallpaper patterns with 3- and 6-fold symmetry inspired a new piece by American composer William Susman, commissioned by the San Jose Chamber Orchestra, Barbara Day Turner, conductor. The piece, “In a State of Patterns,” was premiered on March 25, 2018

    On the primitivity of Lai-Massey schemes

    Full text link
    In symmetric cryptography, the round functions used as building blocks for iterated block ciphers are often obtained as the composition of different layers providing confusion and diffusion. The study of the conditions on such layers which make the group generated by the round functions of a block cipher a primitive group has been addressed in the past years, both in the case of Substitution Permutation Networks and Feistel Networks, giving to block cipher designers the receipt to avoid the imprimitivity attack. In this paper a similar study is proposed on the subject of the Lai-Massey scheme, a framework which combines both Substitution Permutation Network and Feistel Network features. Its resistance to the imprimitivity attack is obtained as a consequence of a more general result in which the problem of proving the primitivity of the Lai-Massey scheme is reduced to the simpler one of proving the primitivity of the group generated by the round functions of a strictly related Substitution Permutation Network

    The Political Economy of Corporate Governance Change in Bulgaria: Washington Consensus, Primitive Accumulation of Capital, and Catching-Up in the 1990

    Get PDF
    This study examines three key determinants of corporate governance change in Bulgaria: the Washington Consensus policy, primitive accumulation of capital forces, and 'catching-up' factors. The study reveals that in the early transition (1989-96) primitive capital accumulation prevailed over the Washington Consensus impact on corporate governance transformation while since 1997 Washington Consensus has been in the process of becoming the decisive factor for institutional change. The emerging corporate governance system has been neither Anglo-American (market based) nor bank-based, but rather a 'crony' relationship-based one. The striking features of this system are as follows: (i) a dual enterprise sector, (ii) ownership heterogeneity; (iii) fragile capital markets; (iv) pervasive banks lending behavior; (v) globalization factors discretion. The challenge to policy-makers in Bulgaria is how to design institutions for 'catching-up' that would curb both managerial and globalization factors discretion.

    Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides

    Get PDF
    Monolayer transition metal dichalcogenides (TMDs) offer new opportunities for realizing quantum dots (QDs) in the ultimate two-dimensional (2D) limit. Given the rich control possibilities of electron valley pseudospin discovered in the monolayers, this quantum degree of freedom can be a promising carrier of information for potential quantum spintronics exploiting single electrons in TMD QDs. An outstanding issue is to identify the degree of valley hybridization, due to the QD confinement, which may significantly change the valley physics in QDs from its form in the 2D bulk. Here we perform a systematic study of the intervalley coupling by QD confinement potentials on extended TMD monolayers. We find that the intervalley coupling in such geometry is generically weak due to the vanishing amplitude of the electron wavefunction at the QD boundary, and hence valley hybridization shall be well quenched by the much stronger spin-valley coupling in monolayer TMDs and the QDs can well inherit the valley physics of the 2D bulk. We also discover sensitive dependence of intervalley coupling strength on the central position and the lateral length scales of the confinement potentials, which may possibly allow tuning of intervalley coupling by external controlsComment: 17 pages, 14 figure

    Correlations in Ultracold Trapped Few-Boson Systems: Transition from Condensation to Fermionization

    Full text link
    We study the correlation properties of the ground states of few ultracold bosons, trapped in double wells of varying barrier height in one dimension. Extending previous results on the signature of the transition from a Bose-condensed state via fragmentation to the hard-core limit, we provide a deeper understanding of that transition by relating it to the loss of coherence in the one-body density matrix and to the emerging long-range tail in the momentum spectrum. These are accounted for in detail by discussing the natural orbitals and their occupations. Our discussion is complemented by an analysis of the two-body correlation function.Comment: 22 pages, 7 figure

    Vibration induced phase noise in Mach-Zehnder atom interferometers

    Full text link
    The high inertial sensitivity of atom interferometers has been used to build accelerometers and gyrometers but this sensitivity makes these interferometers very sensitive to the laboratory seismic noise. This seismic noise induces a phase noise which is large enough to reduce the fringe visibility in many cases. We develop here a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are thus able to explain the observed dependence of the fringe visibility with the diffraction order. The dynamical model developed in the present paper should be very useful to further reduce this phase noise in atom interferometers and this reduction should open the way to improved interferometers
    • 

    corecore