503,051 research outputs found

    Effective viscosity of grease ice in linearized gravity waves

    Full text link
    Grease ice is an agglomeration of disc-shaped ice crystals, named frazil ice, which forms in turbulent waters of the Polar Oceans and in rivers as well. It has been recognized that the properties of grease ice to damp surface gravity waves could be explained in terms of the effective viscosity of the ice slurry. This paper is devoted to the study of the dynamics of a suspension of disc-shaped particles in a gravity wave field. For dilute suspensions, depending on the strength and frequency of the external wave flow, two orientation regimes of the particles are predicted: a preferential orientation regime with the particles rotating in coherent fashion with the wave field, and a random orientation regime in which the particles oscillate around their initial orientation while diffusing under the effect of Brownian motion. For both motion regimes, the effective viscosity has been derived as a function of the wave frequency, wave amplitude and aspect ratio of the particles. Model predictions have been compared with wave attenuation data in frazil ice layers grown in wave tanks.Comment: 13 pages, 3 eps figures included; one more section on inertia effect

    The theory of the double preparation: discerned and indiscerned particles

    Full text link
    In this paper we propose a deterministic and realistic quantum mechanics interpretation which may correspond to Louis de Broglie's "double solution theory". Louis de Broglie considers two solutions to the Schr\"odinger equation, a singular and physical wave u representing the particle (soliton wave) and a regular wave representing probability (statistical wave). We return to the idea of two solutions, but in the form of an interpretation of the wave function based on two different preparations of the quantum system. We demonstrate the necessity of this double interpretation when the particles are subjected to a semi-classical field by studying the convergence of the Schr\"odinger equation when the Planck constant tends to 0. For this convergence, we reexamine not only the foundations of quantum mechanics but also those of classical mechanics, and in particular two important paradox of classical mechanics: the interpretation of the principle of least action and the the Gibbs paradox. We find two very different convergences which depend on the preparation of the quantum particles: particles called indiscerned (prepared in the same way and whose initial density is regular, such as atomic beams) and particles called discerned (whose density is singular, such as coherent states). These results are based on the Minplus analysis, a new branch of mathematics that we have developed following Maslov, and on the Minplus path integral which is the analog in classical mechanics of the Feynman path integral in quantum mechanics. The indiscerned (or discerned) quantum particles converge to indiscerned (or discerned) classical particles and we deduce that the de Broglie-Bohm pilot wave is the correct interpretation for the indiscerned quantum particles (wave statistics) and the Schr\"odinger interpretation is the correct interpretation for discerned quantum particles (wave soliton). Finally, we show that this double interpretation can be extended to the non semi-classical case.Comment: 11 pages, 5 figure

    Determining particle density using known material Hugeniot curves

    Get PDF
    A method is detailed to determine the density of particles wherein the closing velocity is known between the impacting particles and a plate of known material. Either the shock wave velocity or the material velocity produced in the plate upon impact by an unknown material particle is determined and compared with the corresponding shock wave or material velocity that would by produced by different known material particles having the same closing velocity upon impact with the plate. The unknown material particle density is derived by obtaining a coincidence of the shock wave velocity or material velocity conditions initially produced upon impact between the known material plate and one of the different material particles and from the fact that shock wave velocity and material velocity are ordered on the impacting particle material density alone

    Replacing the Singlet Spinor of the EPR-B Experiment in the Configuration Space with two Single-Particle Spinors in Physical Space

    Full text link
    Recently, for spinless non-relativistic particles, Norsen, Marian and Oriols show that in the de Broglie-Bohm interpretation it is possible to replace the wave function in the configuration space by single-particle wave functions in physical space. In this paper, we show that this replacment of the wave function in the configuration space by single-particle functions in the 3D-space is also possible for particles with spin, in particular for the particles of the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen experiment.Comment: 17 pages, 5 figures, accepted in Foundations of Physics 201

    Phase transition in the collisionless regime for wave-particle interaction

    Full text link
    Gibbs statistical mechanics is derived for the Hamiltonian system coupling self-consistently a wave to N particles. This identifies Landau damping with a regime where a second order phase transition occurs. For nonequilibrium initial data with warm particles, a critical initial wave intensity is found: above it, thermodynamics predicts a finite wave amplitude in the limit of infinite N; below it, the equilibrium amplitude vanishes. Simulations support these predictions providing new insight on the long-time nonlinear fate of the wave due to Landau damping in plasmas.Comment: 12 pages (RevTeX), 2 figures (PostScript
    corecore