10 research outputs found

    Autonomy, Efficiency, Privacy and Traceability in Blockchain-enabled IoT Data Marketplace

    Full text link
    Personal data generated from IoT devices is a new economic asset that individuals can trade to generate revenue on the emerging data marketplaces. Blockchain technology can disrupt the data marketplace and make trading more democratic, trustworthy, transparent and secure. Nevertheless, the adoption of blockchain to create an IoT data marketplace requires consideration of autonomy and efficiency, privacy, and traceability. Conventional centralized approaches are built around a trusted third party that conducts and controls all management operations such as managing contracts, pricing, billing, reputation mechanisms etc, raising concern that providers lose control over their data. To tackle this issue, an efficient, autonomous and fully-functional marketplace system is needed, with no trusted third party involved in operational tasks. Moreover, an inefficient allocation of buyers’ demands on battery-operated IoT devices poses a challenge for providers to serve multiple buyers’ demands simultaneously in real-time without disrupting their SLAs (service level agreements). Furthermore, a poor privacy decision to make personal data accessible to unknown or arbitrary buyers may have adverse consequences and privacy violations for providers. Lastly, a buyer could buy data from one marketplace and without the knowledge of the provider, resell bought data to users registered in other marketplaces. This may either lead to monetary loss or privacy violation for the provider. To address such issues, a data ownership traceability mechanism is essential that can track the change in ownership of data due to its trading within and across marketplace systems. However, data ownership traceability is hard because of ownership ambiguity, undisclosed reselling, and dispersal of ownership across multiple marketplaces. This thesis makes the following novel contributions. First, we propose an autonomous and efficient IoT data marketplace, MartChain, offering key mechanisms for a marketplace leveraging smart contracts to record agreement details, participant ratings, and data prices in blockchain without involving any mediator. Second, MartChain is underpinned by an Energy-aware Demand Selection and Allocation (EDSA) mechanism for optimally selecting and allocating buyers' demands on provider’s IoT devices while satisfying the battery, quality and allocation constraints. EDSA maximizes the revenue of the provider while meeting the buyers’ requirements and ensuring the completion of the selected demands without any interruptions. The proof-of-concept implementation on the Ethereum blockchain shows that our approach is viable and benefits the provider and buyer by creating an autonomous and efficient real-time data trading model. Next, we propose KYBChain, a Know-Your-Buyer in the privacy-aware decentralized IoT data marketplace that performs a multi-faceted assessment of various characteristics of buyers and evaluates their privacy rating. Privacy rating empowers providers to make privacy-aware informed decisions about data sharing. Quantitative analysis to evaluate the utility of privacy rating demonstrates that the use of privacy rating by the providers results in a decrease of data leakage risk and generated revenue, correlating with the classical risk-utility trade-off. Evaluation results of KYBChain on Ethereum reveal that the overheads in terms of gas consumption, throughput and latency introduced by our privacy rating mechanism compared to a marketplace that does not incorporate a privacy rating system are insignificant relative to its privacy gains. Finally, we propose TrailChain which generates a trusted trade trail for tracking the data ownership spanning multiple decentralized marketplaces. Our solution includes mechanisms for detecting any unauthorized data reselling to prevent privacy violations and a fair resell payment sharing scheme to distribute payment among data owners for authorized reselling. We performed qualitative and quantitative evaluations to demonstrate the effectiveness of TrailChain in tracking data ownership using four private Ethereum networks. Qualitative security analysis demonstrates that TrailChain is resilient against several malicious activities and security attacks. Simulations show that our method detects undisclosed reselling within the same marketplace and across different marketplaces. Besides, it also identifies whether the provider has authorized the reselling and fairly distributes the revenue among the data owners at marginal overhead

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    XX Workshop de Investigadores en Ciencias de la Computación - WICC 2018 : Libro de actas

    Get PDF
    Actas del XX Workshop de Investigadores en Ciencias de la Computación (WICC 2018), realizado en Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste, los dìas 26 y 27 de abril de 2018.Red de Universidades con Carreras en Informática (RedUNCI

    XX Workshop de Investigadores en Ciencias de la Computación - WICC 2018 : Libro de actas

    Get PDF
    Actas del XX Workshop de Investigadores en Ciencias de la Computación (WICC 2018), realizado en Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste, los dìas 26 y 27 de abril de 2018.Red de Universidades con Carreras en Informática (RedUNCI

    Secure Transmission in Wireless Sensor Networks Data Using Linear Kolmogorov Watermarking Technique

    Full text link
    In Wireless sensor networks (WSNs), All communications between different nodes are sent out in a broadcast fashion. These networks are used in a variety of applications including military, environmental, and smart spaces. Sensors are susceptible to various types of attack, such as data modification, data insertion and deletion, or even physical capture and sensor replacement. Hence security becomes important issue in WSNs. However given the fact that sensors are resources constrained, hence the traditional intensive security algorithms are not well suited for WSNs. This makes traditional security techniques, based on data encryption, not very suitable for WSNs. This paper proposes Linear Kolmogorov watermarking technique for secure data communication in WSNs. We provide a security analysis to show the robustness of the proposed techniques against various types of attacks. This technique is robust against data deletion, packet replication and Sybil attack

    Copyright protection of scalar and multimedia sensor network data using digital watermarking

    Get PDF
    This thesis records the research on watermarking techniques to address the issue of copyright protection of the scalar data in WSNs and image data in WMSNs, in order to ensure that the proprietary information remains safe between the sensor nodes in both. The first objective is to develop LKR watermarking technique for the copyright protection of scalar data in WSNs. The second objective is to develop GPKR watermarking technique for copyright protection of image data in WMSN

    Watermarking technique for copyright protection of wireless sensor network data using LFSR and Kolmogorov complexity

    No full text
    The function of Wireless Sensor Networks (WSNs) is to collect and store data sent to other nodes or servers. Current technologies allow validation during transit, but stop after the data reaches its destination. One of the challenges with these technologies is to ensure that the source of the data is preserved, once it leaves the WSN. This is important as the data can be used by other applications or distributed to other parties. Therefore, it needs to be ensured that the data source is identifiable and the data is valid. Sensors are susceptible to various types of attack, such as data modification, data insertion and deletion, or even physical capture and sensor replacement. Hence, security becomes an important issue with WSNs. The traditional algorithms are used for securing data transmission between sensor nodes. However these algorithms need millions of multiplication instructions to perform operations, and cannot efficiently protect the copyright of the valuable sensor data. Watermarking is one of the effective choices to overcome this challenge. Watermark adds a second line of defense to ensure that the data is valid, even if someone cracks the encryption. This paper proposes a watermarking technique for copyright protection of data in WSNs. It also provides performance evaluation of the technique to show its robustness against various types of attacks, like data deletion, packet replication and Sybil attacks

    Secure Communication in Wireless Multimedia Sensor Networks using Watermarking

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor networks which contain sensor nodes equipped with microphones, cameras, and other sensors that producing multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Since in WMSNs information is multimedia by nature and it uses wireless link as mode of communication so this posse?s serious security threat to this network. Thereby, the security mechanisms to protect WMSNs communication have found importance lately. However given the fact that WMSN nodes are resources constrained, so the traditionally intensive security algorithm is not well suited for WMSNs. Hence in this research, we aim to a develop lightweight digital watermarking enabled techniques as a security approach to ensure secure wireless communication. Finally aim is to provide a secure communication framework for WMSNs by developing new
    corecore