12,542 research outputs found

    The catalytic oxidation of organic contaminants in a packed bed reactor

    Get PDF
    The catalytic oxidation of several hydrocarbons was studied over noble metal and metal oxide catalysts. A fast empirical method was developed to determine the minimum operating temperature required to guarantee complete conversion of the hydrocarbon.\ud \ud The influence of the operating parameters such as the inlet concentration and residence time, as well as the chemical character of the component to be oxidized, have been investigated. The results can be described satisfactorily by a simple isothermal, plug flow reactor model and first-order reaction kinetics. In the case of simultaneous oxidation of different components a significant mixture effect was not observed. The presence of water in the feed did significantly inhibit the oxidation of alkanes.\ud \ud Of the applied catalysts, Pt was the most effective for the combustion of the alkenes, whereas Pd showed a higher activity for the oxidation of alkanes

    AD–OX: A sequential oxidative process for water treatment— Adsorption and batch CWAO regeneration of activated carbon

    Get PDF
    A sequential process for water treatment involving usual adsorption on activated carbon (AC) followed by wet air catalytic oxidation of the adsorbed pollutants has been carried out in a fixed bed reactor with a mixture of two model pollutants. The first step achieves water purification while the second one reduces the organic pollution but also, more importantly, performs some AC in situ regeneration. The experimental work has been done with AC yet extensively used and stabilized by long range continuous oxidation. The two steps have been analyzed successively showing very important drop of adsorption capacity with respect to fresh AC but efficient oxidative partial regeneration. As expected with used AC no more evolution occurs in between two consecutive runs. The first step of competitive adsorption has been simulated by a model leading to higher diffusivities than estimations based on correlations. The main features of the complex second step, involving simultaneous non-isothermal desorption and three phase catalytic reaction, are qualitatively explained

    High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.

    No full text
    High purity hydrogen (>95%) was produced at 600 degrees C and 1 atm by steam reforming of waste cooking oil at a molar steam to carbon ratio of 4 using chemical looping, a process that features redox cycles of a Ni catalyst with the in-situ carbonation/calcination of a CO(2) sorbent (dolomite) in a packed bed reactor under alternated feedstreams of fuel-steam and air. The fuel and steam conversion were higher with the sorbent present than without it. Initially, the dolomite carbonation was very efficient (100%), and 98% purity hydrogen was produced, but the carbonation decreased to around 56% with a purity of 95% respectively in the following cycles. Reduction of the nickel catalyst occurred alongside steam reforming, water gas shift and carbonation, with H(2) produced continuously under fuel-steam feeds. Catalyst and CO(2)-sorbent regeneration was observed, and long periods of autothermal operation within each cycle were demonstrated

    Modeling Fixed Bed Membrane Reactors for Hydrogen Production through Steam Reforming Reactions: A Critical Analysis

    Get PDF
    Membrane reactors for hydrogen production have been extensively studied in the past years due to the interest in developing systems that are adequate for the decentralized production of high-purity hydrogen. Research in this field has been both experimental and theoretical. The aim of this work is two-fold. On the one hand, modeling work on membrane reactors that has been carried out in the past is presented and discussed, along with the constitutive equations used to describe the different phenomena characterizing the behavior of the system. On the other hand, an attempt is made to shed some light on the meaning and usefulness of models developed with different degrees of complexity. The motivation has been that, given the different ways and degrees in which transport models can be simplified, the process is not always straightforward and, in some cases, leads to conceptual inconsistencies that are not easily identifiable or identified

    Process intensification for post combustion COâ‚‚ capture with chemical absorption: a critical review

    Get PDF
    The concentration of COâ‚‚ in the atmosphere is increasing rapidly. COâ‚‚ emissions may have an impact on global climate change. Effective COâ‚‚ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion COâ‚‚ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on COâ‚‚ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Detoxification of water by semiconductor photocatalysis

    Get PDF
    An overview of the use of semiconductor photocatalysis for water purification is given. The basic principles of semiconductor photocatalysis are described along with the current understanding of the underlying reaction mechanism(s) and how it fits in with the major features of the observed Langmuir-Hinshelwood-type kinetics of pollutant destruction. These features are illustrated based on literature on the destruction of aqueous solutions of 4-chlorophenol as a pollutant, using titanium dioxide as the photocatalyst. The range of organic and inorganic pollutants that can be destroyed by semiconductor photocatalysis are reported and discussed. The basic considerations that need to be made when designing a reactor for semiconductor photocatalysis are considered. These include: the nature of the reactor glass, the type of illumination source, and the nature and type of semiconductor photocatalyst. The key basic photoreactor designs are reported and discussed, including external illumination, annular, and circular photoreactors. Actual designs that have been used for fixed and thin falling film semiconductor photocatalyst reactors are illustrated and their different features discussed. Basic non-concentrating and concentrating solar photoreactors for semiconductor photocatalysis are also reported. The design features of the major commercial photocatalytic reactor systems for water purification are reported and illustrated. Several case studies involving commercial photocatalytic reactors for water purification are reported. An attempt is made briefly to compare the efficacy of semiconductor photocatalysis for water purification with that of other, more popular and prevalent water purification processes. The future of semiconductor photocatalysis as a method of purifying water is considered

    Semiconductor grade, solar silicon purification project

    Get PDF
    Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility

    LSA silicon material task closed-cycle process development

    Get PDF
    The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals

    Characterization of a thermostable amidase and development of a bioreactor process for lactic acid production

    Get PDF
    This thesis reports studies of the biochemical properties of a newly isolated thermostable amidase from Bacillus sp. RAPc8, and development of a continuous reactor process for the production of a target product. The amidase was cloned and over-expressed in E. coli BL21 strain pNH 223 pLySs by Cameron (2001). Earlier work by Cameron (2001) on the production and purification of the recombinant amidase showed that the enzyme could be produced with high levels of expression in shake-flask culture. Furthermore, preliminary studies have also shown that the molecular weight of the amidase was approximately 35kDa, and that it acts optimally at a temperature and pH of 50°C and 7.2 respectively
    • …
    corecore