27 research outputs found

    Chem Eng J

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are a class of compounds that have become environmental contaminants of emerging concern. They are highly persistent, toxic, bioaccumulative, and ubiquitous which makes them important to detect to ensure environmental and human health. Multiple instrument-based methods exist for sensitive and selective detection of PFAS in a variety of matrices, but these methods suffer from expensive costs and the need for a laboratory and highly trained personnel. There is a big need for fast, inexpensive, robust, and portable methods to detect PFAS in the field. This would allow environmental laboratories and other agencies to perform more frequent testing to comply with regulations. In addition, the general public would benefit from a fast method to evaluate the drinking water in their homes for PFAS contamination. A PFAS sensor would provide almost real-time data on PFAS concentrations that can also provide actionable information for water quality managers and consumers around the planet. In this review, we discuss the sensors that have been developed up to this point for PFAS detection by their molecular detection mechanism as well as the goals that should be considered during sensor development. Future research needs and commercialization challenges are also highlighted.U54 OH008085/OH/NIOSH CDC HHSUnited States/U54OH008085/ACL/ACL HHSUnited States

    Real-Time Water Quality Monitoring with Chemical Sensors

    Get PDF
    Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described

    Sensores em POF baseados em intensidade para a avaliação da qualidade de águas

    Get PDF
    Nowadays there is the need for low-cost and user-friendly solutions for water quality assessment which can allow for remote, in-site and real-time monitoring of water contaminants. POF sensing technologies combined with specially developed sensitive layers for chemical detection may offer these possibilities, with proper interrogation systems. POF sensing platforms based on low-cost procedures were developed and characterized using aqueous solutions of different refractive indices (RI). The POF RI sensors were optimized by varying the length and/or roughness of the sensing region. The suitability of these sensing platforms for chemical detection was evaluated through the coating with sensitive layers, namely molecularly imprinted polymers (MIPs) using different deposition techniques. The dependency of proteins immobilization on the POF’s surface was evaluated aiming future developments in chemical detection using POF biosensors. A D-shaped POF chemical sensor was successfully developed using a sensitive MIP layer, allowing the detection of perfluorooctanoate (POFA/PFO-) in aqueous media with a limit of detection of 0.20 – 0.28 ppb. The collaboration of researchers from different areas was essential for the success of the developed work.Hoje em dia há uma necessidade de soluções simples e de baixo custo para a avaliação da qualidade de águas e que permitam a monitorização remota de contaminantes, no local e em tempo real. As tecnologias baseadas em POF podem oferecer essa possibilidade através de sistemas de interrogação óptica adequados, combinados com camadas sensíveis especialmente desenvolvidas para detecção química. As plataformas ópticas baseadas em POF foram desenvolvidas e caracterizadas com soluções aquosas com diferentes índices de refracção. Os sensores foram optimizados através da variação do comprimento e/ou rugosidade da região sensível. A capacidade de detecção química das plataformas ópticas desenvolvidas foi avaliada através do revestimento com camadas sensíveis, nomeadamente polímeros molecularmente impressos (PMI), utilizando diferentes técnicas de deposição. A dependência da imobilização de proteínas na superfície de POFs modificadas foi avaliada com o objectivo de desenvolver biossensores para detecção química. Um sensor POF para detecção química, em configuração D-shape, foi desenvolvido com sucesso através do revestimento com um PMI, permitindo a detecção de perfluorooctanoato (POFA/PFO-) em soluções aquosas com um limite de detecção entre 0.20 – 0.28 ppb. A colaboração com investigadores de diferentes áreas foi essencial para o sucesso do trabalho desenvolvido.Programa Doutoral em Engenharia Físic

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    Improving transparency, consistency and efficiency of ecotoxicological teaching: development of an open online textbook Environmental Toxicology

    Get PDF
    Although several textbooks are available, teaching environmental toxicology in general seems to suffer from a lack of a well-elaborated, up-to-date and consistent textbook that covers all aspects of the field. As a consequence, every university is developing its own training materials in addition to a textbook, but only little of this material is available online. And if materials are online, they are not consistent, lack novelty or do not cover the entire field. A Dutch consortium therefore took the initiative to develop an open online textbook on Environmental Toxicology that should cover the field in its full width, including aspects of environmental chemistry, ecotoxicology, toxicology and risk assessment. The initiative is sponsored by the Netherlands Ministry of Education. The project aims at developing an online open access book on Environmental Toxicology that is useful for training at BSc, MSc and higher levels. The book will be designed in a modular way, each module having a clear training goal/attainment level and flagged with a number of keywords. The book will also contain tools for self-study and training, like exercises and questions. With the book, we aim at improving quality, continuity and transparency of the education in environmental toxicology. We also want to make sure that fundamental insights on fate and effects of chemicals gained in the past are combined with recent approaches of effect assessment and molecular analysis of mechanisms causing toxicity. To guarantee quality of the book and associated training materials, we aim at having 1-2 authors for each module and also 1-2 reviewers from outside the team of authors. In addition, an advisory board will be involved in supervising the project, as well as educational advisors, while the project team will serve as an editorial board. The project team, consisting of environmental toxicologists and chemists from six Dutch universities, does not possess all expertise to cover the width of the field. We therefore solicit contributions from as many colleagues as possible from within the SETAC community. With that, we hope we can produce a book that is written and supported by SETAC, that is covering the entire field, and is useful for training within e.g. the SETAC Europe Certified Risk Assessor (CRA) programme. The publication as an open online book will allow continuous updating of the book, providing a possible role of SETAC in sustaining the book
    corecore