1,185 research outputs found

    A general framework for routing problems with stochastic demands

    Get PDF
    We introduce a unified modeling and solution framework for various classes of rich vehicle and inventory routing problems as well as other probability-based routing problems with a time-horizon dimension. Demand is assumed to be stochastic and non-stationary, and is forecast using any forecasting model that provides expected demands over the planning horizon, with error terms from any empirical distribution. We discuss possible applications to various problems from the literature and practice: from health care, waste collection, and maritime inventory routing, to routing problems based on event probabilities, such as facility maintenance where the breakdown probability of a facility increases with time. We provide a detailed discussion on the effects of the stochastic dimension on modeling and the solution methodology. We develop a mixed integer non-linear model, provide examples of how it can be reduced and adapted to specific problem classes, and demonstrate that probability-based routing problems over a planning horizon can be seen through the lens of inventory routing. The optimization methodology is heuristic, based on Adaptive Large Neighborhood Search. The case study is based on waste collection and facility maintenance instances derived from real data. We analyze the cost benefits of open tours and the availability of better forecasting methodologies. We demonstrate that relaxing the distributional assumptions on the error terms and calculating probabilities using simulation information has only a minor impact on computation time. Simulating the error terms on the final solution further allows us to verify the low level of occurrence of undesirable events, such as stock-outs, overflows or breakdowns, with a moderate impact on the routing cost compared to alternative realistic policies. What is more, simulating the objective of the final solution shows that it is an excellent representation of the real cost

    Inventory routing for dynamic waste collection

    Get PDF
    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense networks, the latter becomes more important. To cope with uncertainty in deposit volumes and with fluctuations due to daily and seasonal e ects, we need an anticipatory policy that balances the workload over time. We propose a relatively simple heuristic consisting of several tunable parameters depending on the day of the week. We tune the parameters of this policy using optimal learning techniques combined with simulation. We illustrate our approach using a real life problem instance of a waste collection company, located in The Netherlands, and perform experiments on several other instances. For our case study, we show that costs savings up to 40% are possible by optimizing the parameters

    Why simheuristics? : Benefits, limitations, and best practices when combining metaheuristics with simulation

    Get PDF
    Many decision-making processes in our society involve NP-hard optimization problems. The largescale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone optimization methods. The same applies for isolated simulation models, which do not have the potential to find optimal solutions in a combinatorial environment. This paper discusses the utilization of modelling and solving approaches based on the integration of simulation with metaheuristics. These 'simheuristic' algorithms, which constitute a natural extension of both metaheuristics and simulation techniques, should be used as a 'first-resort' method when addressing large-scale and NP-hard optimization problems under uncertainty -which is a frequent case in real-life applications. We outline the benefits and limitations of simheuristic algorithms, provide numerical experiments that validate our arguments, review some recent publications, and outline the best practices to consider during their design and implementation stages

    Proposed Improvement of Forecasting Using Time Series Forecasting of Fast Moving Consumer Goods

    Get PDF
    The company discussed in this paper is a national distributor firm that distributes FMCG products. The PPIC division in the company is responsible for forecasting the demand using the combination of the moving average method and intuition according to the interest of the company. However, the PPIC staff never measures the accuracy of their forecasting method. This research paper aims to evaluate the forecasting methods used to predict the demands of 12 classes of A SKU. Four-time series forecasting methods are particularly implemented, i.e., ARIMA, moving average (MA), double exponential smoothing (DES), and linear regression (RL). Forecasting using the ARIMA method is carried out by considering the stationarity of the average and variance of the historical data points. Forecasting using DES is carried out by using the optimal alpha and gamma values of the ARIMA method. The results show that the performance of each forecasting method varies, depending on which demands of class A SKU are predicted. Based on these results, the current forecasting method utilized by the company should be improved using the time series forecasting methods leading to the smallest error values for each class of A SKU
    corecore