4,075 research outputs found

    Spartan Daily, November 17, 1998

    Get PDF
    Volume 111, Issue 56https://scholarworks.sjsu.edu/spartandaily/9344/thumbnail.jp

    Matching Code and Law: Achieving Algorithmic Fairness with Optimal Transport

    Full text link
    Increasingly, discrimination by algorithms is perceived as a societal and legal problem. As a response, a number of criteria for implementing algorithmic fairness in machine learning have been developed in the literature. This paper proposes the Continuous Fairness Algorithm (CFAθ\theta) which enables a continuous interpolation between different fairness definitions. More specifically, we make three main contributions to the existing literature. First, our approach allows the decision maker to continuously vary between specific concepts of individual and group fairness. As a consequence, the algorithm enables the decision maker to adopt intermediate ``worldviews'' on the degree of discrimination encoded in algorithmic processes, adding nuance to the extreme cases of ``we're all equal'' (WAE) and ``what you see is what you get'' (WYSIWYG) proposed so far in the literature. Second, we use optimal transport theory, and specifically the concept of the barycenter, to maximize decision maker utility under the chosen fairness constraints. Third, the algorithm is able to handle cases of intersectionality, i.e., of multi-dimensional discrimination of certain groups on grounds of several criteria. We discuss three main examples (credit applications; college admissions; insurance contracts) and map out the legal and policy implications of our approach. The explicit formalization of the trade-off between individual and group fairness allows this post-processing approach to be tailored to different situational contexts in which one or the other fairness criterion may take precedence. Finally, we evaluate our model experimentally.Comment: Vastly extended new version, now including computational experiment

    Outlier detection using distributionally robust optimization under the Wasserstein metric

    Full text link
    We present a Distributionally Robust Optimization (DRO) approach to outlier detection in a linear regression setting, where the closeness of probability distributions is measured using the Wasserstein metric. Training samples contaminated with outliers skew the regression plane computed by least squares and thus impede outlier detection. Classical approaches, such as robust regression, remedy this problem by downweighting the contribution of atypical data points. In contrast, our Wasserstein DRO approach hedges against a family of distributions that are close to the empirical distribution. We show that the resulting formulation encompasses a class of models, which include the regularized Least Absolute Deviation (LAD) as a special case. We provide new insights into the regularization term and give guidance on the selection of the regularization coefficient from the standpoint of a confidence region. We establish two types of performance guarantees for the solution to our formulation under mild conditions. One is related to its out-of-sample behavior, and the other concerns the discrepancy between the estimated and true regression planes. Extensive numerical results demonstrate the superiority of our approach to both robust regression and the regularized LAD in terms of estimation accuracy and outlier detection rates
    corecore