7,289 research outputs found

    Washout Control for Manual Operations

    Get PDF
    It is known that limitations of human accuracy in manual manipulation hinder the quality of work performed by human operators of manual control systems. Indeed, movements of operators are apt to cause undesirable vibrations in manual control systems. In this paper, we propose a new operator-support-control scheme for suppressing harmful oscillatory motions in such systems without disturbing human operator\u27s manipulation. The proposed scheme is based on the fact that steady-state blocking zeros of a feedback controller do not affect the steady-state control input. A finite-dimensional feedback controller with steady-state blocking zeros, called a washout controller in this paper, plays the central role in support for operator\u27s manipulation. However, the dynamics of a manual control system may become different significantly from its initial model used for the design of an initial washout controller when it is applied to the manual control system. Such difference can result in poor performance of operator-support-control. In order to improve it, an iterative procedure is presented for re-design of washout controllers based on closed-loop subspace identification. Closed-loop identification is performed to brush up the model for the control design, and then a more sophisticated washout controller is obtained using the identified model. The effectiveness of the proposed scheme is demonstrated by an experiment on manual control of an inverted pendulum. © 2007 EUCA

    Washout control for manual operations

    Get PDF
    金沢大学理工研究域電子情報学系It is known that limitations of human accuracy in manual manipulation hinder the quality of work performed by human operators of manual control systems. Indeed, movements of operators are apt to cause undesirable vibrations in manual control systems. In this paper, we propose a new operator-support control scheme for suppressing harmful oscillatory motions in such systems without disturbing human operator\u27s manipulation. The proposed scheme is based on the fact that steady-state blocking zeros of a feedback controller do not affect the steady-state control input. A finite-dimensional feedback controller with steady-state blocking zeros, called a washout controller in this paper, plays the central role in support for operator\u27s manipulation. However, the dynamics of a manual control system may become different significantly from its initial model used for the design of an initial washout controller when it is applied to the manual control system. Such difference can result in poor performance of operator-support control. In order to improve it, an iterative procedure is presented for redesign of washout controllers based on closed-loop subspace identification. Closed-loop identification is performed to refine the model for the control design, and then a more sophisticated washout controller is obtained using the identified model. The effectiveness of the proposed scheme is demonstrated by an experiment on manual control of an inverted pendulum. © 2008 IEEE

    Roll tracking effects of G-vector tilt and various types of motion washout

    Get PDF
    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues

    Development of approach control system requirements with applications to a jet transport

    Get PDF
    The development of requirements for an approach control system and example applications to a jet transport aircraft are presented. The material is divided into a general discussion of approach control requirements, and a specific application resulting in the design of three alternative longitudinal controllers. The point of view taken is that the essential features of the system structure are the feedbacks themselves, their equalization, and their combinations to create control commands. Use is made of the fact that for sucessful systems the possible feedback structures are very limited. They derive primarily from guidance, control, and regulation demands; and secondarily from dynamic response characteristics desired by the pilot. From the systems view it is the satisfaction of these requirements that is important rather than the means automatic, manual, or hygrid manual/automatic approach systems

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    Comparison of a linear and a nonlinear washout for motion simulators utilizing objective and subjective data from CTOL transport landing approaches

    Get PDF
    Objective and subjective data gathered in the processes of comparing a linear and a nonlinear washout for motion simulators reveal that there is no difference in the pilot performance measurements used during instrument landing system (ILS) approaches with a Boeing 737 conventional takeoff and landing (CTOL) airplane between fixed base, linear washout, and nonlinear washout operations. However, the subjective opinions of the pilots reveal an important advance in motion cue presentation. The advance is not in the increased cue available over a linear filter for the same amount of motion base travel but rather in the elimination of false rotational rate cues presented by linear filters

    Principles for the design of advanced flight director systems based on the theory of manual control displays

    Get PDF
    Design and development of flight director systems based on theory of manual control display

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Autonomous RPRV Navigation, Guidance and Control

    Get PDF
    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described

    Recent progress towards predicting aircraft ground handling performance

    Get PDF
    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed
    corecore