1,107 research outputs found

    Enhancement of Underwater Video Mosaics for Post-Processing

    Get PDF
    Mosaics of seafloor created from still images or video acquired underwater have proved to be useful for construction of maps of forensic and archeological sites, species\u27 abundance estimates, habitat characterization, etc. Images taken by a camera mounted on a stable platform are registered (at first pair-wise and then globally) and assembled in a high resolution visual map of the surveyed area. While this map is usually sufficient for a human orientation and even quantitative measurements, it often contains artifacts that complicate an automatic post-processing (for example, extraction of shapes for organism counting, or segmentation for habitat characterization). The most prominent artifacts are inter-frame seams caused by inhomogeneous artificial illumination, and local feature misalignments due to parallax effects - result of an attempt to represent a 3D world on a 2D map. In this paper we propose two image processing techniques for mosaic quality enhancement - median mosaic-based illumination correction suppressing appearance of inter-frame seams, and micro warping decreasing influence of parallax effects

    Deep-sea image processing

    Get PDF
    High-resolution seafloor mapping often requires optical methods of sensing, to confirm interpretations made from sonar data. Optical digital imagery of seafloor sites can now provide very high resolution and also provides additional cues, such as color information for sediments, biota and divers rock types. During the cruise AT11-7 of the Woods Hole Oceanographic Institution (WHOI) vessel R/V Atlantis (February 2004, East Pacific Rise) visual imagery was acquired from three sources: (1) a digital still down-looking camera mounted on the submersible Alvin, (2) observer-operated 1-and 3-chip video cameras with tilt and pan capabilities mounted on the front of Alvin, and (3) a digital still camera on the WHOI TowCam (Fornari, 2003). Imagery from the first source collected on a previous cruise (AT7-13) to the Galapagos Rift at 86°W was successfully processed and mosaicked post-cruise, resulting in a single image covering area of about 2000 sq.m, with the resolution of 3 mm per pixel (Rzhanov et al., 2003). This paper addresses the issues of the optimal acquisition of visual imagery in deep-seaconditions, and requirements for on-board processing. Shipboard processing of digital imagery allows for reviewing collected imagery immediately after the dive, evaluating its importance and optimizing acquisition parameters, and augmenting acquisition of data over specific sites on subsequent dives.Images from the deepsea power and light (DSPL) digital camera offer the best resolution (3.3 Mega pixels) and are taken at an interval of 10 seconds (determined by the strobe\u27s recharge rate). This makes images suitable for mosaicking only when Alvin moves slowly (≪1/4 kt), which is not always possible for time-critical missions. Video cameras provided a source of imagery more suitable for mosaicking, despite its inferiority in resolution. We discuss required pre-processing and imageenhancement techniques and their influence on the interpretation of mosaic content. An algorithm for determination of camera tilt parameters from acquired imagery is proposed and robustness conditions are discussed

    Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Get PDF
    Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed) and target (reference image). Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (n = 5 each). In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (P < 0.05) in registration accuracy by landmark optimization in most data sets and trends towards improvement (P < 0.1) in others as compared to manual landmark selection

    Image Reconstruction and Evaluation: Applications on Micro-Surfaces and Lenna Image Representation

    Get PDF
    This article develops algorithms for the characterization and the visualization of micro-scale features using a small number of sample points, with the goal of mitigating the measurement shortcomings, which are often destructive or time consuming. The popular measurement techniques that are used in imaging of micro-surfaces include the 3D stylus or interferometric profilometry and Scanning Electron Microscopy (SEM), where both could represent the micro-surface characteristics in terms of 3D dimensional topology and greyscale image, respectively. Such images could be highly dense; therefore, traditional image processing techniques might be computationally expensive. We implement the algorithms in several case studies to rapidly examine the microscopic features of micro-surface of Microelectromechanical System (MEMS), and then we validate the results using a popular greyscale image; i.e., “Lenna” image. The contributions of this research include: First, development of local and global algorithm based on modified Thin Plate Spline (TPS) model to reconstruct high resolution images of the micro-surface’s topography, and its derivatives using low resolution images. Second, development of a bending energy algorithm from our modified TPS model for filtering out image defects. Finally, development of a computationally efficient technique, referred to as Windowing, which combines TPS and Linear Sequential Estimation (LSE) methods, to enhance the visualization of images. The Windowing technique allows rapid image reconstruction based on the reduction of inverse problem

    Facial Expression Recognition

    Get PDF

    Three-dimensional morphanalysis of the face.

    Get PDF
    The aim of the work reported in this thesis was to determine the extent to which orthogonal two-dimensional morphanalytic (universally relatable) craniofacial imaging methods can be extended into the realm of computer-based three-dimensional imaging. New methods are presented for capturing universally relatable laser-video surface data, for inter-relating facial surface scans and for constructing probabilistic facial averages. Universally relatable surface scans are captured using the fixed relations principle com- bined with a new laser-video scanner calibration method. Inter- subject comparison of facial surface scans is achieved using inter- active feature labelling and warping methods. These methods have been extended to groups of subjects to allow the construction of three-dimensional probabilistic facial averages. The potential of universally relatable facial surface data for applications such as growth studies and patient assessment is demonstrated. In addition, new methods for scattered data interpolation, for controlling overlap in image warping and a fast, high-resolution method for simulating craniofacial surgery are described. The results demonstrate that it is not only possible to extend universally relatable imaging into three dimensions, but that the extension also enhances the established methods, providing a wide range of new applications

    Nonlinear RGB-to-XYZ Mapping for Device Calibration

    Get PDF
    We introduce a new non-linear method for RGB-to-XYZ color calibration based on the technique of thin plate splines. Originally, thin plate splines were designed for deformable matching between 2-dimensional images for object recognition. We use 3-dimensional thin plate splines to map between sets of RGB device coordinates and corresponding sets of CIE XYZ coordinates. Tests calibrating several displays as well as a camera show thin plate spline calibration to be more accurate than existing linear or non-linear calibration methods
    corecore