110 research outputs found

    Warp-Guided GANs for Single-Photo Facial Animation

    Get PDF
    This paper introduces a novel method for realtime portrait animation in a single photo. Our method requires only a single portrait photo and a set of facial landmarks derived from a driving source (e.g., a photo or a video sequence), and generates an animated image with rich facial details. The core of our method is a warp-guided generative model that instantly fuses various fine facial details (e.g., creases and wrinkles), which are necessary to generate a high-fidelity facial expression, onto a pre-warped image. Our method factorizes out the nonlinear geometric transformations exhibited in facial expressions by lightweight 2D warps and leaves the appearance detail synthesis to conditional generative neural networks for high-fidelity facial animation generation. We show such a factorization of geometric transformation and appearance synthesis largely helps the network better learn the high nonlinearity of the facial expression functions and also facilitates the design of the network architecture. Through extensive experiments on various portrait photos from the Internet, we show the significant efficacy of our method compared with prior arts

    FLNet: Landmark Driven Fetching and Learning Network for Faithful Talking Facial Animation Synthesis

    Full text link
    Talking face synthesis has been widely studied in either appearance-based or warping-based methods. Previous works mostly utilize single face image as a source, and generate novel facial animations by merging other person's facial features. However, some facial regions like eyes or teeth, which may be hidden in the source image, can not be synthesized faithfully and stably. In this paper, We present a landmark driven two-stream network to generate faithful talking facial animation, in which more facial details are created, preserved and transferred from multiple source images instead of a single one. Specifically, we propose a network consisting of a learning and fetching stream. The fetching sub-net directly learns to attentively warp and merge facial regions from five source images of distinctive landmarks, while the learning pipeline renders facial organs from the training face space to compensate. Compared to baseline algorithms, extensive experiments demonstrate that the proposed method achieves a higher performance both quantitatively and qualitatively. Codes are at https://github.com/kgu3/FLNet_AAAI2020.Comment: Accepted by AAAI 202

    Free-HeadGAN: Neural Talking Head Synthesis with Explicit Gaze Control

    Full text link
    We present Free-HeadGAN, a person-generic neural talking head synthesis system. We show that modeling faces with sparse 3D facial landmarks are sufficient for achieving state-of-the-art generative performance, without relying on strong statistical priors of the face, such as 3D Morphable Models. Apart from 3D pose and facial expressions, our method is capable of fully transferring the eye gaze, from a driving actor to a source identity. Our complete pipeline consists of three components: a canonical 3D key-point estimator that regresses 3D pose and expression-related deformations, a gaze estimation network and a generator that is built upon the architecture of HeadGAN. We further experiment with an extension of our generator to accommodate few-shot learning using an attention mechanism, in case more than one source images are available. Compared to the latest models for reenactment and motion transfer, our system achieves higher photo-realism combined with superior identity preservation, while offering explicit gaze control

    ICface: Interpretable and Controllable Face Reenactment Using GANs

    Get PDF
    This paper presents a generic face animator that is able to control the pose and expressions of a given face image. The animation is driven by human interpretable control signals consisting of head pose angles and the Action Unit (AU) values. The control information can be obtained from multiple sources including external driving videos and manual controls. Due to the interpretable nature of the driving signal, one can easily mix the information between multiple sources (e.g. pose from one image and expression from another) and apply selective post-production editing. The proposed face animator is implemented as a two-stage neural network model that is learned in a self-supervised manner using a large video collection. The proposed Interpretable and Controllable face reenactment network (ICface) is compared to the state-of-the-art neural network-based face animation techniques in multiple tasks. The results indicate that ICface produces better visual quality while being more versatile than most of the comparison methods. The introduced model could provide a lightweight and easy to use tool for a multitude of advanced image and video editing tasks.Comment: Accepted in WACV-202
    • …
    corecore