1,890 research outputs found

    Power Quality in Public Lighting Installations

    Get PDF

    LED street lighting: A power quality comparison among street light technologies

    Get PDF
    High-pressure sodium lamps are currently the main lamps used in public lighting. However, the possibility of using high-power light emitting diode (LEDs) for street lighting is growing continuously due to their greater energy efficiency, robustness, long life and light control. The aim of this paper is to study the power quality of high-power lighting networks based on LED and high-pressure sodium lamps. Both electromagnetic and dimmable electronic ballasts, which can dim the lamp output smoothly and uniformly, have been used connected to high-pressure sodium lamps. High-pressure sodium lamps connected to electronic equipment have been tested with different arc power levels using dimming on a 230V power supply. The study presented in this paper is completely based on measurements, including harmonic currents in the frequency range up to 150 kHz for all the technologies. The main results show a broadband spectrum in LED lamps which confirms other research in Fuorescent lamps powered by high-frequency ballasts. Results also indicate a decrease in the harmonic value with increasing harmonic order, and a decrease in the harmonic value at half load (60%) compared with full load (100%). Although total harmonic distortion of the current is lower with highpressure sodium lamps connected to electronic rather than electromagnetic ballasts, LED lamps achieved the lowest total harmonic distortion of curren

    Dimming of metal halide lamps

    Get PDF

    Evaluation of Losses in HID Electronic Ballast Using Silicon Carbide MOSFETs

    Get PDF
    HID lamps are used in applications where high luminous intensity is desired. They are used in a wide range of applications from gymnasiums to movie theatres, from parking lots to indoor aquaria, from vehicle headlights to indoor gardening. They require ballasts during start-up and also during operation to regulate the voltage and current levels. Electronic ballasts have advantages of less weight, smooth operation, and less noisy over electromagnetic ballasts. A number of topologies are available for the electronic ballast where control of power electronic devices is exploited to achieve the performance of a ballast for lighting. A typical electronic ballast consists of a rectifier, power factor control unit, and the resonant converter unit. Power factor correction (PFC) was achieved using a boost converter topology and average current mode control for gate control of the boost MOSFET operating at a frequency of 70 kHz. The PFC was tested with Si and SiC MOSFET at 250 W resistive load for varying input from 90 V to 264 V. An efficiency as high as 97.4% was achieved by Si MOSFET based PFC unit. However, for SiC MOSFET, the efficiency decreased and was lower than expected. A maximum efficiency of 97.2% was achieved with the SiC based PFC. A simulation model was developed for both Si and SiC MOSFET based ballasts. The efficiency plots are presented. A faster gate drive for SiC MOSFET could improve the efficiency of the SiC based systems

    Reducing the ecological consequences of night-time light pollution: options and developments.

    Get PDF
    1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects.2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the 'trespass' of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting.3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards 'whiter' light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths.4.Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.The research leading to this article has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 268504

    Architectural/Environmental Handbook for Extraterrestrial Design

    Get PDF
    Handbook on environmental and space utilization criteria for design of extraterrestrial manned spacecraft and shelter

    Electronic operation and control of high-intensity gas-discharge lamps

    Get PDF
    The ever increasing amount of global energy consumption based on the application of fossil fuels is threatening the earth’s natural resources and environment. Worldwide, grid-based electric lighting consumes 19 % of total global electricity production. For this reason the transition towards energy efficient lighting plays an important environmental role. One of the key technologies in this transition is High-Intensity Discharge (HID) lighting. The technical revolution in gas-discharge lamps has resulted in the highlyefficient lamps that are available nowadays. As with most energy efficient light solutions, all HID lighting systems require a ballast to operate. Traditionally, magnetic ballast designs were the only choice available for HID lighting systems. Today, electronic lampdrivers can offer additional power saving, flicker free operation, and miniaturisation. Electronic lamp operation enables additional degrees of freedom in lamp-current control over the conventional electro-magnetic (EM) ballasts. The lamp-driver system performance depends on both the dynamics of the lamp and the driver. This thesis focuses on the optimisation of electronically operated HID systems, in terms of highly-efficient lamp-driver topologies and, more specifically, lamp-driver interaction control. First, highly-efficient power topologies to operate compact HID lamps on low-frequency-square-wave (LFSW) current are explored. The proposed two-stage electronic lamp-driver consists of a Power Factor Corrector (PFC) stage that meets the power utility standards. This converter is coupled to a stacked buck converter that controls the lamp-current. Both stages are operated in Zero Voltage Switching (ZVS) mode in order to reduce the switching losses. The resulting two-stage lamp-drivers feature flexible controllability, high efficiency, and high power density, and are suitable for power sandwich packaging. Secondly, lamp-driver interaction (LDI) has been studied in the simulation domain and control algorithms have been explored that improve the stability, and enable system optimisation. Two HID lamp models were developed. The first model describes the HID lamp’s small-signal electrical behaviour and its purpose is to aid to study the interaction stability. The second HID lamp model has been developed based on physics equations for the arc column and the electrode behaviour, and is intended for lampdriver simulations and control applications. Verification measurements have shown that the lamp terminal characteristics are present over a wide power and frequency range. Three LDI control algorithms were explored, using the proposed lampmodels. The first control principle optimises the LDI for a broad range of HID lamps operated at normal or reduced power. This approach consists of two control loops integrated into a fuzzy-logic controller that stabilises the lamp-current and optimises the commutation process. The second control problem concerns the application of ultra high performance (UHP) HID lamps in projection applications that typically set stringent requirements on the quality of the light generated by these lamps, and therefore the lampcurrent. These systems are subject to periodic disturbances synchronous with the LFSW commutation period. Iterative learning control (ILC) has been examined. It was experimentally verified that this algorithm compensates for repetitive disturbances. Third, Electronic HID operation also opens the door for continuous HID lamp dimming that can provide additional savings. To enable stable dimming, an observer-based HID lamp controller has been developed. This controller sets a stable minimum dim-level and monitors the gas-discharge throughout lamp life. The HID lamp observer derives physical lamp state signals from the HID arc discharge physics and the related photometric properties. Finally, practical measurements proved the proposed HID lamp observer-based control principle works satisfactorily

    Impact of modern lighting technology on the power line communications channel

    Get PDF
    Abstract: In this study, we look at the impact of modern lighting technology on Power Line Communications (PLC). Power Line Communications has become important due to the Smart Grid and Internet of Things (IoT) development. Modern lighting technology has been developed to make efficient use of electric energy. This technology uses power converters to enable the use of different lighting sources. A byproduct of this conversion process is electronic noise. This noise can interfere with the PLC channel. In this study, different lighting technologies are investigated from a noise standpoint and compared to PLC signal levels. Both narrowband and broadband PLC frequency ranges are investigated. This study shows that the influence of noise on the PLC channel depends predominantly on the conversion topology as well as whether filters have been used. The measurement results show that the influence on data communication system can vary in impact from low to severe. Results were obtained for low energy, high energy, indoor and outdoor lighting sources. A common front end topology encounted is the bridge rectifier and high frequency DC-DC converter combination. These topologies are investigated in details. The study presented here shows that lighting technology (causing interference) needs special consideration when designing PLC systems. Of particular importance is the use of filters which ensure compliance with interference standards and limit the noise effects on the PLC signal.D.Ing. (Electrical and Electronic Engineering Science

    Improving Ambulance Compartment Insulation, Energy and Lighting Design

    Get PDF
    The goal of this project is to improve the ambulance compartment design in the areas of insulation, lighting and energy efficiency while abiding by the standards specified by the Federal specifications.Modern ambulances implement light emitting diodes (LEDs) that are known to be power efficient.However, Hybrid lighting systems (LED-Incandescent) are suggested in order to reduce overall power consumption while maintaining the light quality that is necessary for optimal EMT working performance. The outcome of this research in regards to efficient insulation material suggests that implementing closed-cell polyurethane foam insulation greatly improves sound attenuation and energy efficiency

    Postharvest Degradation of Microalgae: Effect of Temperature and Water Activity

    Get PDF
    Though usually a nuisance in swimming pools and ponds, algae has the potential to be a valuable commodity for use as food and fuel. But before algae butter and biofuel become commonplace, issues with harvesting and storing this new crop need to be overcome. Though there has been ample research into how to grow and use algae, scientists have spent little time figuring out what to do after you pull it out of the water and before you eat it (or turn it into biodiesel). Algae, like all food products, starts to spoil as soon as it is harvested. This study looked at three methods of preserving algae, freezing, drying, and pasteurization. Freezing is a good method for preserving fats and proteins, but it is expensive to freeze tons of algae. Freezing and thawing destroyed the algal cells, producing a soupy mixture that may cause complications for processing into foods or fuels. Drying was able to preserve the fats in algae, but only if it was dried just the right amount, about as dry as cheese or ham. Pasteurization was able to prevent the oils in the algae from going rancid by inactivating a protein in the algae that causes the oil to spoil rapidly. Overall, this research is an initial step in finding a process to produce a shelf stable algal commodity, opening the door to new and valuable products for human use
    • …
    corecore