15,383 research outputs found

    Waiting times in discrete-time cyclic-service systems

    Get PDF
    Single-served, multiqueue systems with cyclic service in discrete time are considered. Nonzero switchover times between consecutive queues are assumed; the service strategies at the various queues may differ. A decomposition for the amount of work in such systems is obtained, leading to an exact expression for a weighted sum of the mean waiting times at the various queues

    Mixed Polling with Rerouting and Applications

    Full text link
    Queueing systems with a single server in which customers wait to be served at a finite number of distinct locations (buffers/queues) are called discrete polling systems. Polling systems in which arrivals of users occur anywhere in a continuum are called continuous polling systems. Often one encounters a combination of the two systems: the users can either arrive in a continuum or wait in a finite set (i.e. wait at a finite number of queues). We call these systems mixed polling systems. Also, in some applications, customers are rerouted to a new location (for another service) after their service is completed. In this work, we study mixed polling systems with rerouting. We obtain their steady state performance by discretization using the known pseudo conservation laws of discrete polling systems. Their stationary expected workload is obtained as a limit of the stationary expected workload of a discrete system. The main tools for our analysis are: a) the fixed point analysis of infinite dimensional operators and; b) the convergence of Riemann sums to an integral. We analyze two applications using our results on mixed polling systems and discuss the optimal system design. We consider a local area network, in which a moving ferry facilitates communication (data transfer) using a wireless link. We also consider a distributed waste collection system and derive the optimal collection point. In both examples, the service requests can arrive anywhere in a subset of the two dimensional plane. Namely, some users arrive in a continuous set while others wait for their service in a finite set. The only polling systems that can model these applications are mixed systems with rerouting as introduced in this manuscript.Comment: to appear in Performance Evaluatio

    Computational Procedures for a Class of GI/D/ k

    Get PDF
    A class of discrete time GI/D/k systems is considered for which the interarrival times have finite support and customers are served in first-in first-out (FIFO) order. The system is formulated as a single server queue with new general independent interarrival times and constant service duration by assuming cyclic assignment of customers to the identical servers. Then the queue length is set up as a quasi-birth-death (QBD) type Markov chain. It is shown that this transformed GI/D/1 system has special structures which make the computation of the matrix R simple and efficient, thereby reducing the number of multiplications in each iteration significantly. As a result we were able to keep the computation time very low. Moreover, use of the resulting structural properties makes the computation of the distribution of queue length of the transformed system efficient. The computation of the distribution of waiting time is also shown to be simple by exploiting the special structures

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    Analysis of a queuing model for slotted ring networks

    Get PDF
    We study a multi-server multi-queue system which is intended to model a local area network with slotted ring protocol. Two special cases of the model are analysed and the results are used to motivate an approach to approximate mean queue lengths in the general model
    corecore