30 research outputs found

    Performance analysis of ATM/DQDB interworking

    Get PDF

    High speed protocols for dual bus and dual ring network architectures

    Get PDF
    In this dissertation, two channel access mechanisms providing fair and bandwidth efficient transmission on dual bus and dual ring networks with high bandwidth-latency product are proposed. In addition, two effective priority mechanisms are introduced to meet the throughput and delay requirements of the diverse arrays of applications that future high speed networks must support. For dual bus architectures, the Buffer Insertion Bandwidth Balancing (BI_BWB) mechanism and the Preemptive priority Bandwidth Balancing (P_BI_BWB) mechanism are proposed. BI_BWB can significantly improve the delay performance of remote stations. It achieves that by providing each station with a shift register into which the station can temporarily store the upstream stations\u27 transmitted packets and replace these packets with its own transmissions. P_BI_BWB, an enhancement of BI_BWB, is designed to introduce effective preemptive priorities. This mechanism eliminates the effect of low priority on high priority by buffering the low priority traffic into a shift register until the transmission of the high priority traffic is complete. For dual ring architectures, the Fair Bandwidth Allocation Mechanism (FBAM) and the Effective Priority Bandwidth Balancing (EP_BWB) mechanism are introduced. FBAM allows stations to reserve channel bandwidth on a continuous basis rather than wait until bandwidth starvation is observed. Consequently, FBAM does not have to deal with the difficult issue of identifying starvation, a serious drawback of other access mechanisms such as the Local and Global Fairness Algorithms (LFA and GFA, respectively). In addition, its operation requires a significantly smaller number of control bits in the access control field of the slot and its performance is less sensitive to system parameters. Moreover, FBAM demonstrates Max-Min flow control properties with respect to the allocation of bandwidth among competing traffic streams, which is a significant advantage of FBAM over all the previously proposed channel access mechanisms. EP_BWB, an enhancement of FBAM to support preemptive priorities, minimizes the effect of low priority on high priority and supports delay-sensitive traffic by enabling higher priority classes to preempt the transmissions of lower priority classes. Finally, the great potential of EP_BWB to support the interconnection of base stations on a distributed control wireless PCN carrying voice and data traffic is demonstrated

    Medium access control mechanisms for high speed metropolitan area networks

    Get PDF
    In this dissertation novel Medium Access Control mechanisms for High Speed Metropolitan Area networks are proposed and their performance is investigated under the presence of single and multiple priority classes of traffic. The proposed mechanisms are based on the Distributed Queue Dual Bus network, which has been adopted by the IEEE standardization committee as the 802.6 standard for Metropolitan Area Networks, and address most of its performance limitations. First, the Rotating Slot Generator scheme is introduced which uses the looped bus architecture that has been proposed for the 802.6 network. According to this scheme the responsibility for generating slots moves periodically from station to station around the loop. In this way, the positions of the stations relative to the slot generator change continuously, and therefore, there are no favorable locations on the busses. Then, two variations of a new bandwidth balancing mechanism, the NSW_BWB and ITU_NSW are introduced. Their main advantage is that their operation does not require the wastage of channel slots and for this reason they can converge very fast to the steady state, where the fair bandwidth allocation is achieved. Their performance and their ability to support multiple priority classes of traffic are thoroughly investigated. Analytic estimates for the stations\u27 throughputs and average segment delays are provided. Moreover, a novel, very effective priority mechanism is introduced which can guarantee almost immediate access for high priority traffic, regardless of the presence of lower priority traffic. Its performance is thoroughly investigated and its ability to support real time traffic, such as voice and video, is demonstrated. Finally, the performance under the presence of erasure nodes of the various mechanisms that have been proposed in this dissertation is examined and compared to the corresponding performance of the most prominent existing mechanisms

    An efficient guaranteed bandwidth and balancing mechanism for high speed MANs

    Get PDF
    The Distributed Queue Dual Bus (DQDB) has become the IEEE 802.6 stan-dard for Metropolitan Area Networks (MANs). The main advantage of DQDB is that its throughput performance is not affected by the network parameters such as size, number of connected stations, or channel bandwidth. Its main drawback is that the location of the stations on the bus strongly affects their performance. For this reason a Bandwidth Balancing Mechanism (BBM_DQDB) has been proposed and included in the 802.6 standard that can provide the requested bandwidth by the lightly loaded stations and evenly distribute the remaining bandwidth among the overloaded stations. The guaranteed bandwidth required by some applications has also motivated the recent introduction of another mechanism, the Guaranteed Bandwidth (GBW_DQDB) mechanism, that can guarantee the required level of throughput to certain high priority stations. In this thesis we first discuss the main advantages and disadvantages of BBM_DQDB and GBW_DQDB and then we introduce a new mechanism, the Guaranteed Bandwidth and Balancing Mechanism (GBBM), that combines the advantages of the previous two mechanisms and can significantly improve the throughput and delay performance of the stations. We provide a detailed description of the new mechanism and we investigate its performance through simulation results. Furthermore, we compare its performance with the corresponding performance of BBM_DQDB and GBW_DQDB

    Optical-drop wavelength assignment problem for wavelength reuse in WDM ring metropolitan area networks

    Get PDF
    This paper presents a formulation of the optical-drop wavelength assignment problem (ODWAP) and its heuristic algorithm for WDM ring networks. The wavelength-division multiplexing (WDM) technology has been popular in communication societies for providing very large communication bands by multiple lightpaths with different wavelengths on a single optical fiber. Particularly, a double-ring optical network architecture based on the packet-over-WDM technology such as the HORNET architecture has been studied as a next generation platform for metropolitan area networks (MANs). Each node in this architecture is equipped with a wavelength-fixed optical-drop and a tunable transmitter so that a lightpath can be established between any pair of nodes without wavelength conversions. In this paper, we formulate ODWAP for efficient wavelength reuse under heterogeneous traffic in this network. Then, we propose a simple heuristic algorithm for ODWAP. Through extensive simulations, we demonstrate the effectiveness of our approach in reducing waiting times for packet transmissions when a small number of wavelengths are available to retain the network cost for MANs

    Fair and efficient transmission over GBPS dual ring networks

    Get PDF
    The advances in fiber optics technology provide large bandwidth and enable the support of a wide variety of services. New network architectures have been proposed, such as Metaring and Distributed Queue Dual Bus (DQDB), that try to take advantage of the new capabilities. Because of the very small packet transmission time relative to the feedback time a challenging issue in high speed networks is the efficient and fair share of the channel bandwidth among the competing users. In this thesis we first investigate and compare the performance of the Global and Local Fairness Mechanisms (GFM and LFM, respectively). They have been proposed recently for fair bandwidth allocation in high speed dual ring networks employing destination release. (a slot that has been read by its destination is immediately released and can be used again by other nodes). We show the sensitivity of both mechanisms to various system parameters, such as channel bandwidth and ring latency. We introduce the Dynamic Medium Access Control Mechanism (DMAC) which does not suffer from the limitations of GFM and LFM, introduces fairness in a very effective and efficient way, and is insensitive to the network parameters

    A Fairness Algorithm for High-speed Networks based on a Resilient Packet Ring Architecture

    Get PDF
    IEEE is currently standardizing a spatial reuse ring topology network called the Resilient Packet Ring (RPR, IEEE P802.17). The goal of the RPR development is to make a LAN/MAN standard, but also WANs are discussed. A ring network needs a fairness algorithm that regulates each stations access to the ring. The RPR fairness algorithm is currently being developed with mostly long distances between stations in mind. In this paper we discuss the feedback aspects of this algorithm and how it needs to be changed in order to give good performance if and when RPR is used for high-speed networks and LANs with shorter distances between stations. We discuss different architectural parameters including buffers sizes and distances between stations. We suggest the use of triggers instead of timers to meet the response requirements of high-speed networks. We have developed a discrete event simulator in the programming language Java. The proposed improvements are compared and evaluated using a ring network model that we have built using our simulator. (c) 2002 IEEE. Personal use of this material is permitted

    Robustness of bus overlays in optical networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 53-56).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Local area networks (LANs) nowadays use optical fiber as the medium of communication. This fiber is used to connect a collection of electro-optic nodes which form network clouds. A network cloud is a distribution network that connects several external nodes to the backbone, and often takes the form of a star or tree. Optical stars and trees have expensive and inefficient recovery schemes, and as a result, are not attractive options when designing networks. In order to solve this problem, we introduce a virtual topology that makes use of the robustness that is inherently present in a metropolitan area network (MAN) or wide area network (WAN) (long haul network). The virtual topology uses a folded bus scheme and includes some of the elements of the real topology (architecture). By optically bypassing some of the router/switch nodes in the physical architecture, the virtual topology yields better recovery performance and more efficient systems (with respect to cost related to bandwidth and recoverability). We present a bus overlay which uses simple access nodes and is robust to single failures. Our architecture allows the use of existing optical backbone infrastructure. We consider a linear folded bus architecture and introduce a T-shaped folded bus. Although buses are generally not able to recover from failures, we propose a loopback approach. Our approach allows optical bypass of some routers during normal operation, thus reducing the load on routers, but makes use of routers in case of failures. We analyze the behavior of our linear and T-shaped systems under average use and failure conditions. We show that certain simple characteristics of the traffic matrix give meaningful performance characterization. We show that our architecture provides solutions which limit loads on the router.by Ari Levon Libarikian.S.M

    Multiservice QoS-Enabled MAC for Optical Burst Switching

    Get PDF
    The emergence of a broad range of network-driven applications (e.g., multimedia, online gaming) brings in the need for a network environment able to provide multiservice capabilities with diverse quality-of-service (QoS) guarantees. In this paper, a medium access control protocol is proposed to support multiple services and QoS levels in optical burst-switched mesh networks without wavelength conversion. The protocol provides two different access mechanisms, queue-arbitrated and prearbitrated for connectionless and connection-oriented burst transport, respectively. It has been evaluated through extensive simulations and its simplistic form makes it very promising for implementation and deployment. Results indicate that the protocol can clearly provide a relative quality differentiation for connectionless traffic and guarantee null (or negligible, and thus acceptable) burst loss probability for a wide range of network (or offered) load while ensuring low access delay for the higher-priority traffic. Furthermore, in the multiservice scenario mixing connectionless and connection-oriented burst transmissions, three different prearbitrated slot scheduling algorithms are evaluated, each one providing a different performance in terms of connection blocking probability. The overall results demonstrate the suitability of this architecture for future integrated multiservice optical networks
    corecore