78 research outputs found

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    PoET-BiN: Power Efficient Tiny Binary Neurons

    Get PDF
    RÉSUMÉ Le succès des réseaux de neurones dans la classification des images a inspiré diverses implémentations matérielles sur des systèmes embarqués telles que des FPGAs, des processeurs embarqués et des unités de traitement graphiques. Ces systèmes sont souvent limités en termes de puissance. Toutefois, les réseaux de neurones consomment énormément à travers les opérations de multiplication/accumulation et des accès mémoire pour la récupération des poids. La quantification et l’élagage ont été proposés pour résoudre ce problème. Bien que efficaces, ces techniques ne prennent pas en compte l’architecture sous-jacente du matériel utilisé. Dans ce travail, nous proposons une implémentation économe en énergie, basée sur une table de vérité, d’un neurone binaire sur des systèmes embarqués à ressources limitées. Une approche d’arbre de décision modifiée constitue le fondement de la mise en œuvre proposée dans le domaine binaire. Un accès de LUT consomme beaucoup moins d’énergie que l’opération équivalente de multiplication/accumulation qu’il remplace. De plus, l’algorithme modifié de l’arbre de décision élimine le besoin d’accéder à la mémoire. Nous avons utilisé les neurones binaires proposés pour mettre en œuvre la couche de classification de réseaux utilisés pour la résolution des jeux de données MNIST, SVHN et CIFAR-10, avec des résultats presque à la pointe de la technologie. La réduction de puissance pour la couche de classification atteint trois ordres de grandeur pour l’ensemble de données MNIST et cinq ordres de grandeur pour les ensembles de données SVHN et CIFAR-10.----------ABSTRACT The success of neural networks in image classification has inspired various hardware implementations on embedded platforms such as Field Programmable Gate Arrays, embedded processors and Graphical Processing Units. These embedded platforms are constrained in terms of power, which is mainly consumed by the Multiply Accumulate operations and the memory accesses for weight fetching. Quantization and pruning have been proposed to ad-dress this issue. Though effective, these techniques do not take into account the underlying architecture of the embedded hardware. In this work, we propose PoET-BiN, a Look-Up Table based power efficient implementation on resource constrained embedded devices. A modified Decision Tree approach forms the backbone of the proposed implementation in the binary domain. A LUT access consumes far less power than the equivalent Multiply Accumulate operation it replaces, and the modified Decision Tree algorithm eliminates the need for memory accesses. We applied the PoET-BiN architecture to implement the classification layers of networks trained on MNIST, SVHN and CIFAR-10 datasets, with near state-of-the art results. The energy reduction for the classifier portion reaches up to six orders of magnitude compared to a floating point implementations and up to three orders of magnitude when compared to recent binary quantized neural networks

    Assessment of monthly rain fade in the equatorial region at C & KU-band using measat-3 satellite links

    Get PDF
    C & Ku-band satellite communication links are the most commonly used for equatorial satellite communication links. Severe rainfall rate in equatorial regions can cause a large rain attenuation in real compared to the prediction. ITU-R P. 618 standards are commonly used to predict satellite rain fade in designing satellite communication network. However, the prediction of ITU-R is still found to be inaccurate hence hinder a reliable operational satellite communication link in equatorial region. This paper aims to provide an accurate insight by assessment of the monthly C & Ku-band rain fade performance by collecting data from commercial earth stations using C band and Ku-band antenna with 11 m and 13 m diameter respectively. The antennas measure the C & Ku-band beacon signal from MEASAT-3 under equatorial rain conditions. The data is collected for one year in 2015. The monthly cumulative distribution function is developed based on the 1-year data. RMSE analysis is made by comparing the monthly measured data of C-band and Ku-band to the ITU-R predictions developed based on ITU-R’s P.618, P.837, P.838 and P.839 standards. The findings show that Ku-band produces an average of 25 RMSE value while the C-band rain attenuation produces an average of 2 RMSE value. Therefore, the ITU-R model still under predicts the rain attenuation in the equatorial region and this call for revisit of the fundamental quantity in determining the rain fade for rain attenuation to be re-evaluated

    Advances in Sensors and Sensing for Technical Condition Assessment and NDT

    Get PDF
    The adequate assessment of key apparatus conditions is a hot topic in all branches of industry. Various online and offline diagnostic methods are widely applied to provide early detections of any abnormality in exploitation. Furthermore, different sensors may also be applied to capture selected physical quantities that may be used to indicate the type of potential fault. The essential steps of the signal analysis regarding the technical condition assessment process may be listed as: signal measurement (using relevant sensors), processing, modelling, and classification. In the Special Issue entitled “Advances in Sensors and Sensing for Technical Condition Assessment and NDT”, we present the latest research in various areas of technology

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Triple scheme based on image steganography to improve imperceptibility and security

    Get PDF
    A foremost priority in the information technology and communication era is achieving an effective and secure steganography scheme when considering information hiding. Commonly, the digital images are used as the cover for the steganography owing to their redundancy in the representation, making them hidden to the intruders. Nevertheless, any steganography system launched over the internet can be attacked upon recognizing the stego cover. Presently, the design and development of an effective image steganography system are facing several challenging issues including the low capacity, poor security, and imperceptibility. Towards overcoming the aforementioned issues, a new decomposition scheme was proposed for image steganography with a new approach known as a Triple Number Approach (TNA). In this study, three main stages were used to achieve objectives and overcome the issues of image steganography, beginning with image and text preparation, followed by embedding and culminating in extraction. Finally, the evaluation stage employed several evaluations in order to benchmark the results. Different contributions were presented with this study. The first contribution was a Triple Text Coding Method (TTCM), which was related to the preparation of secret messages prior to the embedding process. The second contribution was a Triple Embedding Method (TEM), which was related to the embedding process. The third contribution was related to security criteria which were based on a new partitioning of an image known as the Image Partitioning Method (IPM). The IPM proposed a random pixel selection, based on image partitioning into three phases with three iterations of the HĂ©non Map function. An enhanced Huffman coding algorithm was utilized to compress the secret message before TTCM process. A standard dataset from the Signal and Image Processing Institute (SIPI) containing color and grayscale images with 512 x 512 pixels were utilised in this study. Different parameters were used to test the performance of the proposed scheme based on security and imperceptibility (image quality). In image quality, four important measurements that were used are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Histogram analysis. Whereas, two security measurements that were used are Human Visual System (HVS) and Chi-square (X2) attacks. In terms of PSNR and SSIM, the Lena grayscale image obtained results were 78.09 and 1 dB, respectively. Meanwhile, the HVS and X2 attacks obtained high results when compared to the existing scheme in the literature. Based on the findings, the proposed scheme give evidence to increase capacity, imperceptibility, and security to overcome existing issues

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition
    • …
    corecore