1,355 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering

    Wireless Sensor Network Clustering with Machine Learning

    Get PDF
    Wireless sensor networks (WSNs) are useful in situations where a low-cost network needs to be set up quickly and no fixed network infrastructure exists. Typical applications are for military exercises and emergency rescue operations. Due to the nature of a wireless network, there is no fixed routing or intrusion detection and these tasks must be done by the individual network nodes. The nodes of a WSN are mobile devices and rely on battery power to function. Due the limited power resources available to the devices and the tasks each node must perform, methods to decrease the overall power consumption of WSN nodes are an active research area. This research investigated using genetic algorithms and graph algorithms to determine a clustering arrangement of wireless nodes that would reduce WSN power consumption and thereby prolong the lifetime of the network. The WSN nodes were partitioned into clusters and a node elected from each cluster to act as a cluster head. The cluster head managed routing tasks for the cluster, thereby reducing the overall WSN power usage. The clustering configuration was determined via genetic algorithm and graph algorithms. The fitness function for the genetic algorithm was based on the energy used by the nodes. It was found that the genetic algorithm was able to cluster the nodes in a near-optimal configuration for energy efficiency. Chromosome repair was also developed and implemented. Two different repair methods were found to be successful in producing near-optimal solutions and reducing the time to reach the solution versus a standard genetic algorithm. It was also found the repair methods were able to implement gateway nodes and energy balance to further reduce network energy consumption

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Comparison and Analysis on AI Based Data Aggregation Techniques in Wireless Networks

    Get PDF
    In modern era WSN, data aggregation technique is the challenging area for researchers from long time. Numbers of researchers have proposed neural network (NN) and fuzzy logic based data aggregation methods in Wireless Environment. The main objective of this paper is to analyse the existing work on artificial intelligence (AI) based data aggregation techniques in WSNs. An attempt has been made to identify the strength and weakness of AI based techniques.In addition to this, a modified protocol is designed and developed.And its implementation also compared with other existing approaches ACO and PSO. Proposed approach is better in terms of network lifetime and throughput of the networks. In future an attempt can be made to overcome the existing challenges during data aggregation in WSN using different AI and Meta heuristic based techniques

    Designing an Energy Efficient Network Using Integration of KSOM, ANN and Data Fusion Techniques

    Get PDF
    Energy in a wireless sensor network (WSN) is rendered as the major constraint that affects the overall feasibility and performance of a network. With the dynamic and demanding requirements of diverse applications, the need for an energy efficient network persists. Therefore, this paper proposes a mechanism for optimizing the energy consumption in WSN through the integration of artificial neural networks (ANN) and Kohonen self-organizing map (KSOM) techniques. The clusters are formed and re-located after iteration for effective distribution of energy and reduction of energy depletion at individual nodes. Furthermore, back propagation algorithm is used as a supervised learning method for optimizing the approach and reducing the loss function. The simulation results show the effectiveness of the proposed energy efficient network
    • …
    corecore