2,587 research outputs found

    Attack Taxonomy Methodology Applied to Web Services

    Get PDF
    With the rapid evolution of attack techniques and attacker targets, companies and researchers question the applicability and effectiveness of security taxonomies. Although the attack taxonomies allow us to propose a classification scheme, they are easily rendered useless by the generation of new attacks. Due to its distributed and open nature, web services give rise to new security challenges. The purpose of this study is to apply a methodology for categorizing and updating attacks prior to the continuous creation and evolution of new attack schemes on web services. Also, in this research, we collected thirty-three (33) types of attacks classified into five (5) categories, such as brute force, spoofing, flooding, denial-of-services, and injection attacks, in order to obtain the state of the art of vulnerabilities against web services. Finally, the attack taxonomy is applied to a web service, modeling through attack trees. The use of this methodology allows us to prevent future attacks applied to many technologies, not only web services.Con la rápida evolución de las técnicas de ataque y los objetivos de los atacantes, las empresas y los investigadores cuestionan la aplicabilidad y eficacia de las taxonomías de seguridad. Si bien las taxonomías de ataque nos permiten proponer un esquema de clasificación, son fácilmente inutilizadas por la generación de nuevos ataques. Debido a su naturaleza distribuida y abierta, los servicios web plantean nuevos desafíos de seguridad. El propósito de este estudio es aplicar una metodología para categorizar y actualizar ataques previos a la continua creación y evolución de nuevos esquemas de ataque a servicios web. Asimismo, en esta investigación recolectamos treinta y tres (33) tipos de ataques clasificados en cinco (5) categorías, tales como fuerza bruta, suplantación de identidad, inundación, denegación de servicios y ataques de inyección, con el fin de obtener el estado del arte de las vulnerabilidades contra servicios web. Finalmente, se aplica la taxonomía de ataque a un servicio web, modelado a través de árboles de ataque. El uso de esta metodología nos permite prevenir futuros ataques aplicados a muchas tecnologías, no solo a servicios web

    La traduzione specializzata all’opera per una piccola impresa in espansione: la mia esperienza di internazionalizzazione in cinese di Bioretics© S.r.l.

    Get PDF
    Global markets are currently immersed in two all-encompassing and unstoppable processes: internationalization and globalization. While the former pushes companies to look beyond the borders of their country of origin to forge relationships with foreign trading partners, the latter fosters the standardization in all countries, by reducing spatiotemporal distances and breaking down geographical, political, economic and socio-cultural barriers. In recent decades, another domain has appeared to propel these unifying drives: Artificial Intelligence, together with its high technologies aiming to implement human cognitive abilities in machinery. The “Language Toolkit – Le lingue straniere al servizio dell’internazionalizzazione dell’impresa” project, promoted by the Department of Interpreting and Translation (Forlì Campus) in collaboration with the Romagna Chamber of Commerce (Forlì-Cesena and Rimini), seeks to help Italian SMEs make their way into the global market. It is precisely within this project that this dissertation has been conceived. Indeed, its purpose is to present the translation and localization project from English into Chinese of a series of texts produced by Bioretics© S.r.l.: an investor deck, the company website and part of the installation and use manual of the Aliquis© framework software, its flagship product. This dissertation is structured as follows: Chapter 1 presents the project and the company in detail; Chapter 2 outlines the internationalization and globalization processes and the Artificial Intelligence market both in Italy and in China; Chapter 3 provides the theoretical foundations for every aspect related to Specialized Translation, including website localization; Chapter 4 describes the resources and tools used to perform the translations; Chapter 5 proposes an analysis of the source texts; Chapter 6 is a commentary on translation strategies and choices

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Responsible Composition and Optimization of Integration Processes under Correctness Preserving Guarantees

    Full text link
    Enterprise Application Integration deals with the problem of connecting heterogeneous applications, and is the centerpiece of current on-premise, cloud and device integration scenarios. For integration scenarios, structurally correct composition of patterns into processes and improvements of integration processes are crucial. In order to achieve this, we formalize compositions of integration patterns based on their characteristics, and describe optimization strategies that help to reduce the model complexity, and improve the process execution efficiency using design time techniques. Using the formalism of timed DB-nets - a refinement of Petri nets - we model integration logic features such as control- and data flow, transactional data storage, compensation and exception handling, and time aspects that are present in reoccurring solutions as separate integration patterns. We then propose a realization of optimization strategies using graph rewriting, and prove that the optimizations we consider preserve both structural and functional correctness. We evaluate the improvements on a real-world catalog of pattern compositions, containing over 900 integration processes, and illustrate the correctness properties in case studies based on two of these processes.Comment: 37 page

    A Formal Engineering Approach for Interweaving Functional and Security Requirements of RESTful Web APIs

    Get PDF
    RESTful Web API adoption has become ubiquitous with the proliferation of REST APIs in almost all domains with modern web applications embracing the micro-service architecture. This vibrant and expanding adoption of APIs, has made an increasing amount of data to be funneled through systems which require proper access management to ensure that web assets are secured. A RESTful API provides data using the HTTP protocol over the network, interacting with databases and other services and must preserve its security properties. Currently, practitioners are facing two major challenges for developing high quality secure RESTful APIs. One, REST is not a protocol. Instead, it is a set of guidelines that define how web resources can be designed and accessed over HTTP endpoints. There are a set of guidelines which stipulate how related resources should be structured using hierarchical URIs as well as how specific well-defined actions on those resources should be represented using different HTTP verbs. Whereas security has always been critical in the design of RESTful APIs, there are no clear formal models utilizing a secure-by-design approach that interweaves both the functional and security requirements. The other challenge is how to effectively utilize a model driven approach for constructing precise requirements and design specifications so that the security of a RESTFul API is considered as a concern that transcends across functionality rather than individual isolated operations.This thesis proposes a novel technique that encourages a model driven approach to specifying and verifying APIs functional and security requirements with the practical formal method SOFL (Structured-Object-Oriented Formal Language). Our proposed approach provides a generic 6 step model driven approach for designing security aware APIs by utilizing concepts of domain models, domain primitives, Ecore metamodel and SOFL. The first step involves generating a flat file with APIs resource listings. In this step, we extract resource definitions from an input RESTful API documentation written in RAML using an existing RAML parser. The output of this step is a flat file representing API resources as defined in the RAML input file. This step is fully automated. The second step involves automatic construction of an API resource graph that will work as a blue print for creating the target API domain model. The input for this step is the flat file generated from step 1 and the output is a directed graph (digraph) of API resource. We leverage on an algorithm which we created that takes a list of lists of API resource nodes and the defined API root resource node as an input, and constructs a digraph highlighting all the API resources as an output. In step 3, we use the generated digraph as a guide to manually define the API’s initial domain model as the target output with an aggregate root corresponding to the root node of the input digraph and the rest of the nodes corresponding to domain model entities. In actual sense, the generated digraph in step 2 is a barebone representation of the target domain model, but what is missing in the domain model at this stage in the distinction between containment and reference relationship between entities. The resulting domain model describes the entire ecosystem of the modeled API in the form of Domain Driven Design Concepts of aggregates, aggregate root, entities, entity relationships, value objects and aggregate boundaries. The fourth step, which takes our newly defined domain model as input, involves a threat modeling process using Attack Defense Trees (ADTrees) to identify potential security vulnerabilities in our API domain model and their countermeasures. aCountermeasures that can enforce secure constructs on the attributes and behavior of their associated domain entities are modeled as domain primitives. Domain primitives are distilled versions of value objects with proper invariants. These invariants enforce security constraints on the behavior of their associated entities in our API domain model. The output of this step is a complete refined domain model with additional security invariants from the threat modeling process defined as domain primitives in the refined domain model. This fourth step achieves our first interweaving of functional and security requirements in an implicit manner. The fifth step involves creating an Ecore metamodel that describes the structure of our API domain model. In this step, we rely on the refined domain model as input and create an Ecore metamodel that our refined domain model corresponds to, as an output. Specifically, this step encompasses structural modeling of our target RESTful API. The structural model describes the possible resource types, their attributes, and relations as well as their interface and representations. The sixth and the final step involves behavioral modeling. The input for this step is an Ecore metamodel from step 5 and the output is formal security aware RESTful API specifications in SOFL language. Our goal here is to define RESTful API behaviors that consist of actions corresponding to their respective HTTP verbs i.e., GET, POST, PUT, DELETE and PATCH. For example, CreateAction creates a new resource, an UpdateAction provides the capability to change the value of attributes and ReturnAction allows for response definition including the Representation and all metadata. To achieve behavioral modelling, we transform our API methods into SOFL processes. We take advantage of the expressive nature of SOFL processes to define our modeled API behaviors. We achieve the interweaving of functional and security requirements by injecting boolean formulas in post condition of SOFL processes. To verify whether the interweaved functional and security requirements implement all expected functions correctly and satisfy the desired security constraints, we can optionally perform specification testing. Since implicit specifications do not indicate algorithms for implementation but are rather expressed with predicate expressions involving pre and post conditions for any given specification, we can substitute all the variables involved a process with concrete values of their types with results and evaluate their results in the form of truth values true or false. When conducting specification testing, we apply SOFL process animation technique to obtain the set of concrete values of output variables for each process functional scenario. We analyse test results by comparing the evaluation results with an analysis criteria. An analysis criteria is a predicate expression representing the properties to be verified. If the evaluation results are consistent with the predicate expression, the analysis show consistency between the process specification and its associated requirement. We generate the test cases for both input and output variables based on the user requirements. The test cases generated are usually based on test targets which are predicate expressions, such as the pre and post conditions of a process. when testing for conformance of a process specification to its associated service operation, we only need to observe the execution results of the process by providing concrete input values to all of its functional scenarios and analyze their defining conditions relative to user requirements. We present an empirical case study for validating the practicality and usability of our model driven formal engineering approach by applying it in developing a Salon Booking System. A total of 32 services covering functionalities provided by the Salon Booking System API were developed. We defined process specifications for the API services with their respective security requirements. The security requirements were injected in the threat modeling and behavioral modeling phase of our approach. We test for the interweaving of functional and security requirements in the specifications generated by our approach by conducting tests relative to original RAML specifications. Failed tests were exhibited in cases where injected security measure like requirement of an object level access control is not respected i.e., object level access control is not checked. Our generated SOFL specification correctly rejects such case by returning an appropriate error message while the original RAML specification incorrectly dictates to accept such request, because it is not aware of such measure. We further demonstrate a technique for generating SOFL specifications from a domain model via model to text transformation. The model to text transformation technique semi-automates the generation of SOFL formal specification in step 6 of our proposed approach. The technique allows for isolation of dynamic and static sections of the generated specifications. This enables our technique to have the capability of preserving the static sections of the target specifications while updating the dynamic sections in response to the changes of the underlying domain model representing the RESTful API in design. Specifically, our contribution is provision of a systemic model driven formal engineering approach for design and development of secure RESTful web APIs. The proposed approach offers a six-step methodology covering both structural and behavioral modelling of APIs with a focus on security. The most distinguished merit of the model to text transformation is the utilization of the API’s domain model as well as a metamodel that the domain model corresponds to as the foundation for generation of formal SOFL specifications that is a representation of API’s functional and security requirements.博士(理学)法政大学 (Hosei University

    Digital Twins and Blockchain for IoT Management

    Get PDF
    We live in a data-driven world powered by sensors getting data from anywhere at any time. This advancement is possible thanks to the Internet of Things (IoT). IoT embeds common physical objects with heterogeneous sensing, actuating, and communication capabilities to collect data from the environment and people. These objects are generally known as things and exchange data with other things, entities, computational processes, and systems over the internet. Consequently, a web of devices and computational processes emerges involving billions of entities collecting, processing, and sharing data. As a result, we now have an internet of entities/things that process and produce data, an ever-growing volume that can easily exceed petabytes. Therefore, there is a need for novel management approaches to handle the previously unheard number of IoT devices, processes, and data streams. This dissertation focuses on solutions for IoT management using decentralized technologies. A massive number of IoT devices interact with software and hardware components and are owned by different people. Therefore, there is a need for decentralized management. Blockchain is a capable and promising distributed ledger technology with features to support decentralized systems with large numbers of devices. People should not have to interact with these devices or data streams directly. Therefore, there is a need to abstract access to these components. Digital twins are software artifacts that can abstract an object, a process, or a system to enable communication between the physical and digital worlds. Fog/edge computing is the alternative to the cloud to provide services with less latency. This research uses blockchain technology, digital twins, and fog/edge computing for IoT management. The systems developed in this dissertation enable configuration, self-management, zero-trust management, and data streaming view provisioning from a fog/edge layer. In this way, this massive number of things and the data they produce are managed through services distributed across nodes close to them, providing access and configuration security and privacy protection

    SECURITY CHALLENGES IN CLOUD COMPUTING

    Get PDF
    corecore