773 research outputs found

    A Framework for Model-Driven Scientific Workflow Engineering

    Get PDF
    So-called scientific workflows are one important means in the context of data-intensive science for reliable and efficient scientific data processing in distributed computing infrastructures such as Grids. Scientific Workflow Management Systems (SWfMS) help scientists model and run scientific workflows, whereas a domain-specific layer for workflow modeling by a scientist and a technical layer for automated workflow execution can be distinguished. Initially, many SWfMS were developed from scratch using custom workflow technologies languages without application of already existing and established business workflow technologies. Among the reasons were different life cycles for scientific and business workflows as well as incompatible interfaces and communication protocols of the respective execution infrastructures. Meanwhile, several business IT infrastructures have evolved to serviceoriented architectures (SOAs), for which many Web service standards and technologies have been developed. The Web Services Business Process Execution Language (BPEL), for example, is a well-accepted standard for the implementation and execution of business workflows in SOAs. The SOA architecture pattern has been adopted in scientific IT infrastructures by so-called Service Grids based on existing standards and technologies. Due to this development, BPEL is also suitable for the execution of scientific workflows at the technical layer, which has been elaborated on in many publications and projects. However, BPEL is a workflow language for IT experts and is originally not suited for scientific workflow modeling by a scientist at the domain-specific layer. A domain-specific abstraction of BPEL is therefore required that can be specifically tailored for scientific workflow modeling as well as a corresponding mapping to the technical layer. These challenges of the domain-specific abstraction and the mapping are addressed in this thesis with the help of the Business Process Model and Notation (BPMN) standard and technologies from Model-Driven Software Development (MDSD). Therefore, the MoDFlow approach for Model-Driven Scientific WorkFlow Engineering is presented to map domain-specific scientific workflow models via a BPMN-based intermediate layer to an executable workflow model. The intermediate layer is specified by MoDFlow.BPMN, which is a BPMN metamodel subset with custom extensions for the scientific domain. MoDFlow.BPMN2BPEL defines three consecutive transformation steps to map MoDFlow.BPMN to BPEL for workflow execution. Furthermore, different methods to utilize and extend MoDFlow.BPMN and MoDFlow.BPMN2BPEL are described in the MoDFlow approach, in which the definition of so-called domain-specific languages (DSLs) for the modeling of scientific workflows at the domain-specific layer is focused. The MoDFlow framework is an implementation of the MoDFlow approach, which is based on the Eclipse Modeling Framework (EMF). The MoDFlow framework is evaluated in three application scenarios, in which different utilization and extension mechanisms are examined. The first two application scenarios investigate the technical feasibility of the approach and support scientific workflows with parameter sweeps that are executed on a Grid infrastructure. The third application scenario has been conducted in collaboration with the PubFlow project, which aims to create an infrastructure to model and execute data publication workflows. Based on the Xtext framework, a textual DSL and a corresponding language infrastructure is defined for this purpose that supports developers in creating data publication workflows. This scenario aims to illustrate the practicability of the MoDFlow framework. PubFlow currently plans to implement an additional graphical DSL based on the BPMN notation and a corresponding workflow editor for scientists

    Distributed orchestration of user interfaces

    Get PDF
    Workflow management systems focus on the coordination of people and work items, service composition approaches on the coordination of service invocations, and, recently, web mashups have started focusing on the integration and coordination of pieces of user interfaces (UIs), e.g., a Google map, inside simple web pages. While these three approaches have evolved in a rather isolated fashion although they can be seen as evolution of the componentization and coordination idea from people to services to UIs in this paper we describe a component-based development paradigm that conciliates the core strengths of these three approaches inside a single model and language. We call this new paradigm distributed UI orchestration, so as to reflect the mashup-like and process-based nature of our target applications. In order to aid developers in implementing UI orchestrations, we equip the described model and language with suitable design, deployment, and runtime instruments, covering the whole life cycle of distributed UI orchestrations. © 2011 Elsevier Ltd. All rights reserved

    Web Services Support for Dynamic Business Process Outsourcing

    Get PDF
    Outsourcing of business processes is crucial for organizations to be effective, efficient and flexible. To meet fast-changing market conditions, dynamic outsourcing is required, in which business relationships are established and enacted on-the-fly in an adaptive, fine-grained way unrestricted by geographic distance. This requires automated means for both the establishment of outsourcing relationships and for the enactment of services performed in these relationships over electronic channels. Due to wide industry support and the underlying model of loose coupling of services, Web services increasingly become the mechanism of choice to connect organizations across organizational boundaries. This paper analyzes to which extent Web services support the dynamic process outsourcing paradigm. We discuss contract -based dynamic business process outsourcing to define requirements and then introduce the Web services framework. Based on this, we investigate the match between the two. We observe that the Web services framework requires further support for cross - organizational business processes and mechanisms for contracting, QoS management and process-based transaction support and suggest ways to fill those gaps

    A QoS-Aware BPEL Framework for Service Selection and Composition Using QoS Properties

    Get PDF
    Abstract—The promise of service oriented computing, and the availability of web services in particular, promote delivery of services and creation of new services composed of existing services – service components are assembled to achieve integrated computational goals. Business organizations strive to utilize the services and to provide new service solutions and they will need appropriate tools to achieve these goals. As web and internet based services grow into clouds, inter-dependency of services and their complexity increases tremendously. The cloud ontology depicts service layers from a high-level, such as Application and Software, to a low-level, such as Infrastructure and Platform. Each component resides at one layer can be useful to others as a service. It hints the amount of complexity resulting from not only horizontal but also vertical integrations in building and deploying a composite service. Our framework tackles the complexity of the selection and composition issues with additional qualitative information to the service descriptions using Business Process Execution Language (BPEL). Engineers can use BPEL to explore design options, and have the QoS properties analyzed for the design. QoS properties of each service are annotated with our extension to Web Service Description Language (WSDL). In this paper, we describe our framework and illustrate its application to one QoS property, performance. We translate BPEL orchestration and choreography into appropriate queuing networks, and analyze the resulting model to obtain the performance properties of the composed service. Our framework is also designed to support utilizations of other QoS extensions of WSDL, adaptable business logic languages, and composition models for other QoS properties

    A Classification of BPEL Extensions

    Get PDF
    The Business Process Execution Language (BPEL) has emerged as de-facto standard for business processes implementation. This language is designed to be extensible for including additional valuable features in a standardized manner. There are a number of BPEL extensions available. They are, however, neither classified nor evaluated with respect to their compliance to the BPEL standard. This article fills this gap by providing a framework for classifying BPEL extensions, a classification of existing extensions, and a guideline for designing BPEL extensions
    corecore