108 research outputs found

    Minimal Infrastructure Radio Frequency Home Localisation Systems

    Get PDF
    The ability to track the location of a subject in their home allows the provision of a number of location based services, such as remote activity monitoring, context sensitive prompts and detection of safety critical situations such as falls. Such pervasive monitoring functionality offers the potential for elders to live at home for longer periods of their lives with minimal human supervision. The focus of this thesis is on the investigation and development of a home roomlevel localisation technique which can be readily deployed in a realistic home environment with minimal hardware requirements. A conveniently deployed Bluetooth ยฎ localisation platform is designed and experimentally validated throughout the thesis. The platform adopts the convenience of a mobile phone and the processing power of a remote location calculation computer. The use of Bluetooth ยฎ also ensures the extensibility of the platform to other home health supervision scenarios such as wireless body sensor monitoring. Central contributions of this work include the comparison of probabilistic and nonprobabilistic classifiers for location prediction accuracy and the extension of probabilistic classifiers to a Hidden Markov Model Bayesian filtering framework. New location prediction performance metrics are developed and signicant performance improvements are demonstrated with the novel extension of Hidden Markov Models to higher-order Markov movement models. With the simple probabilistic classifiers, location is correctly predicted 80% of the time. This increases to 86% with the application of the Hidden Markov Models and 88% when high-order Hidden Markov Models are employed. Further novelty is exhibited in the derivation of a real-time Hidden Markov Model Viterbi decoding algorithm which presents all the advantages of the original algorithm, while producing location estimates in real-time. Significant contributions are also made to the field of human gait-recognition by applying Bayesian filtering to the task of motion detection from accelerometers which are already present in many mobile phones. Bayesian filtering is demonstrated to enable a 35% improvement in motion recognition rate and even enables a floor recognition rate of 68% using only accelerometers. The unique application of time-varying Hidden Markov Models demonstrates the effect of integrating these freely available motion predictions on long-term location predictions

    An IoT based Virtual Coaching System (VSC) for Assisting Activities of Daily Life

    Get PDF
    Nowadays aging of the population is becoming one of the main concerns of theworld. It is estimated that the number of people aged over 65 will increase from 461million to 2 billion in 2050. This substantial increment in the elderly population willhave significant consequences in the social and health care system. Therefore, in thecontext of Ambient Intelligence (AmI), the Ambient Assisted Living (AAL) has beenemerging as a new research area to address problems related to the aging of the population. AAL technologies based on embedded devices have demonstrated to be effectivein alleviating the social- and health-care issues related to the continuous growing of theaverage age of the population. Many smart applications, devices and systems have beendeveloped to monitor the health status of elderly, substitute them in the accomplishment of activities of the daily life (especially in presence of some impairment or disability),alert their caregivers in case of necessity and help them in recognizing risky situations.Such assistive technologies basically rely on the communication and interaction be-tween body sensors, smart environments and smart devices. However, in such contextless effort has been spent in designing smart solutions for empowering and supportingthe self-efficacy of people with neurodegenerative diseases and elderly in general. Thisthesis fills in the gap by presenting a low-cost, non intrusive, and ubiquitous VirtualCoaching System (VCS) to support people in the acquisition of new behaviors (e.g.,taking pills, drinking water, finding the right key, avoiding motor blocks) necessary tocope with needs derived from a change in their health status and a degradation of theircognitive capabilities as they age. VCS is based on the concept of extended mind intro-duced by Clark and Chalmers in 1998. They proposed the idea that objects within theenvironment function as a part of the mind. In my revisiting of the concept of extendedmind, the VCS is composed of a set of smart objects that exploit the Internet of Things(IoT) technology and machine learning-based algorithms, in order to identify the needsof the users and react accordingly. In particular, the system exploits smart tags to trans-form objects commonly used by people (e.g., pillbox, bottle of water, keys) into smartobjects, it monitors their usage according to their needs, and it incrementally guidesthem in the acquisition of new behaviors related to their needs. To implement VCS, thisthesis explores different research directions and challenges. First of all, it addresses thedefinition of a ubiquitous, non-invasive and low-cost indoor monitoring architecture byexploiting the IoT paradigm. Secondly, it deals with the necessity of developing solu-tions for implementing coaching actions and consequently monitoring human activitiesby analyzing the interaction between people and smart objects. Finally, it focuses on the design of low-cost localization systems for indoor environment, since knowing theposition of a person provides VCS with essential information to acquire information onperformed activities and to prevent risky situations. In the end, the outcomes of theseresearch directions have been integrated into a healthcare application scenario to imple-ment a wearable system that prevents freezing of gait in people affected by Parkinson\u2019sDisease

    ์ ๋ถ„ ๋ฐ ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ• ์œตํ•ฉ์„ ์ด์šฉํ•œ ์Šค๋งˆํŠธํฐ ๋‹ค์ค‘ ๋™์ž‘์—์„œ ๋ณดํ–‰ ํ•ญ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๋ฐ•์ฐฌ๊ตญ.In this dissertation, an IA-PA fusion-based PDR (Pedestrian Dead Reckoning) using low-cost inertial sensors is proposed to improve the indoor position estimation. Specifically, an IA (Integration Approach)-based PDR algorithm combined with measurements from PA (Parametric Approach) is constructed so that the algorithm is operated even in various poses that occur when a pedestrian moves with a smartphone indoors. In addition, I propose an algorithm that estimates the device attitude robustly in a disturbing situation by an ellipsoidal method. In addition, by using the machine learning-based pose recognition, it is possible to improve the position estimation performance by varying the measurement update according to the poses. First, I propose an adaptive attitude estimation based on ellipsoid technique to accurately estimate the direction of movement of a smartphone device. The AHRS (Attitude and Heading Reference System) uses an accelerometer and a magnetometer as measurements to calculate the attitude based on the gyro and to compensate for drift caused by gyro sensor errors. In general, the attitude estimation performance is poor in acceleration and geomagnetic disturbance situations, but in order to effectively improve the estimation performance, this dissertation proposes an ellipsoid-based adaptive attitude estimation technique. When a measurement disturbance comes in, it is possible to update the measurement more accurately than the adaptive estimation technique without considering the direction by adjusting the measurement covariance with the ellipsoid method considering the direction of the disturbance. In particular, when the disturbance only comes in one axis, the proposed algorithm can use the measurement partly by updating the other two axes considering the direction. The proposed algorithm shows its effectiveness in attitude estimation under disturbances through the rate table and motion capture equipment. Next, I propose a PDR algorithm that integrates IA and PA that can be operated in various poses. When moving indoors using a smartphone, there are many degrees of freedom, so various poses such as making a phone call, texting, and putting a pants pocket are possible. In the existing smartphone-based positioning algorithms, the position is estimated based on the PA, which can be used only when the pedestrian's walking direction and the device's direction coincide, and if it does not, the position error due to the mismatch in angle is large. In order to solve this problem, this dissertation proposes an algorithm that constructs state variables based on the IA and uses the position vector from the PA as a measurement. If the walking direction and the device heading do not match based on the pose recognized through machine learning technique, the position is updated in consideration of the direction calculated using PCA (Principal Component Analysis) and the step length obtained through the PA. It can be operated robustly even in various poses that occur. Through experiments considering various operating conditions and paths, it is confirmed that the proposed method stably estimates the position and improves performance even in various indoor environments.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ €๊ฐ€ํ˜• ๊ด€์„ฑ์„ผ์„œ๋ฅผ ์ด์šฉํ•œ ๋ณดํ–‰ํ•ญ๋ฒ•์‹œ์Šคํ…œ (PDR: Pedestrian Dead Reckoning)์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณดํ–‰์ž๊ฐ€ ์‹ค๋‚ด์—์„œ ์Šค๋งˆํŠธํฐ์„ ๋“ค๊ณ  ์ด๋™ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋™์ž‘ ์ƒํ™ฉ์—์„œ๋„ ์šด์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก, ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฐ˜ ์ธก์ •์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ ๋ถ„ ๊ธฐ๋ฐ˜์˜ ๋ณดํ–‰์ž ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ ํƒ€์›์ฒด ๊ธฐ๋ฐ˜ ์ž์„ธ ์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌ์„ฑํ•˜์—ฌ ์™ธ๋ž€ ์ƒํ™ฉ์—์„œ๋„ ๊ฐ•์ธํ•˜๊ฒŒ ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ์ธ์‹ ์ •๋ณด๋ฅผ ์ด์šฉ, ๋™์ž‘์— ๋”ฐ๋ฅธ ์ธก์ •์น˜ ์—…๋ฐ์ดํŠธ๋ฅผ ๋‹ฌ๋ฆฌํ•จ์œผ๋กœ์จ ์œ„์น˜ ์ถ”์ • ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋จผ์ € ์Šค๋งˆํŠธํฐ ๊ธฐ๊ธฐ์˜ ์ด๋™ ๋ฐฉํ–ฅ์„ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ํƒ€์›์ฒด ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜ ์ ์‘ ์ž์„ธ ์ถ”์ •์„ ์ œ์•ˆํ•œ๋‹ค. ์ž์„ธ ์ถ”์ • ๊ธฐ๋ฒ• (AHRS: Attitude and Heading Reference System)์€ ์ž์ด๋กœ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์„ธ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ž์ด๋กœ ์„ผ์„œ์˜ค์ฐจ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋“œ๋ฆฌํ”„ํŠธ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ธก์ •์น˜๋กœ ๊ฐ€์†๋„๊ณ„์™€ ์ง€์ž๊ณ„๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ€์† ๋ฐ ์ง€์ž๊ณ„ ์™ธ๋ž€ ์ƒํ™ฉ์—์„œ๋Š” ์ž์„ธ ์ถ”์ • ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š”๋ฐ, ์ถ”์ • ์„ฑ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํƒ€์›์ฒด ๊ธฐ๋ฐ˜ ์ ์‘ ์ž์„ธ ์ถ”์ • ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ธก์ •์น˜ ์™ธ๋ž€์ด ๋“ค์–ด์˜ค๋Š” ๊ฒฝ์šฐ, ์™ธ๋ž€์˜ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์—ฌ ํƒ€์›์ฒด ๊ธฐ๋ฒ•์œผ๋กœ ์ธก์ •์น˜ ๊ณต๋ถ„์‚ฐ์„ ์กฐ์ •ํ•ด์คŒ์œผ๋กœ์จ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ ์‘ ์ถ”์ • ๊ธฐ๋ฒ•๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •์น˜ ์—…๋ฐ์ดํŠธ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์™ธ๋ž€์ด ํ•œ ์ถ•์œผ๋กœ๋งŒ ๋“ค์–ด์˜ค๋Š” ๊ฒฝ์šฐ, ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•ด ๋‚˜๋จธ์ง€ ๋‘ ์ถ•์— ๋Œ€ํ•ด์„œ๋Š” ์—…๋ฐ์ดํŠธ ํ•ด์คŒ์œผ๋กœ์จ ์ธก์ •์น˜๋ฅผ ๋ถ€๋ถ„์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ ˆ์ดํŠธ ํ…Œ์ด๋ธ”, ๋ชจ์…˜ ์บก์ณ ์žฅ๋น„๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ž์„ธ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋‹ค์–‘ํ•œ ๋™์ž‘์—์„œ๋„ ์šด์šฉ ๊ฐ€๋Šฅํ•œ ์ ๋ถ„ ๋ฐ ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ์œตํ•ฉํ•˜๋Š” ๋ณดํ–‰ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์Šค๋งˆํŠธํฐ์„ ์ด์šฉํ•ด ์‹ค๋‚ด๋ฅผ ์ด๋™ํ•  ๋•Œ์—๋Š” ์ž์œ ๋„๊ฐ€ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์ „ํ™” ๊ฑธ๊ธฐ, ๋ฌธ์ž, ๋ฐ”์ง€ ์ฃผ๋จธ๋‹ˆ ๋„ฃ๊ธฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋™์ž‘์ด ๋ฐœ์ƒ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ธฐ์กด์˜ ์Šค๋งˆํŠธํฐ ๊ธฐ๋ฐ˜ ๋ณดํ–‰ ํ•ญ๋ฒ•์—์„œ๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋ณดํ–‰์ž์˜ ์ง„ํ–‰ ๋ฐฉํ–ฅ๊ณผ ๊ธฐ๊ธฐ์˜ ๋ฐฉํ–ฅ์ด ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ์ž์„ธ ์˜ค์ฐจ๋กœ ์ธํ•œ ์œ„์น˜ ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ๋ถ„ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒํƒœ๋ณ€์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋‚˜์˜ค๋Š” ์œ„์น˜ ๋ฒกํ„ฐ๋ฅผ ์ธก์ •์น˜๋กœ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋งŒ์•ฝ ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•ด ์ธ์‹ํ•œ ๋™์ž‘์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง„ํ–‰ ๋ฐฉํ–ฅ๊ณผ ๊ธฐ๊ธฐ ๋ฐฉํ–ฅ์ด ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ, ์ฃผ์„ฑ๋ถ„ ๋ถ„์„์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ์ง„ํ–‰๋ฐฉํ–ฅ์„ ์ด์šฉํ•ด ์ง„ํ–‰ ๋ฐฉํ–ฅ์„, ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์–ป์€ ๋ณดํญ์œผ๋กœ ๊ฑฐ๋ฆฌ๋ฅผ ์—…๋ฐ์ดํŠธํ•ด ์คŒ์œผ๋กœ์จ ๋ณดํ–‰ ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ์—ฌ๋Ÿฌ ๋™์ž‘์—์„œ๋„ ๊ฐ•์ธํ•˜๊ฒŒ ์šด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋™์ž‘ ์ƒํ™ฉ ๋ฐ ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์œ„์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ๋„ ์•ˆ์ •์ ์œผ๋กœ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Objectives and Contribution 5 1.3 Organization of the Dissertation 6 Chapter 2 Pedestrian Dead Reckoning System 8 2.1 Overview of Pedestrian Dead Reckoning 8 2.2 Parametric Approach 9 2.2.1 Step detection algorithm 11 2.2.2 Step length estimation algorithm 13 2.2.3 Heading estimation 14 2.3 Integration Approach 15 2.3.1 Extended Kalman filter 16 2.3.2 INS-EKF-ZUPT 19 2.4 Activity Recognition using Machine Learning 21 2.4.1 Challenges in HAR 21 2.4.2 Activity recognition chain 22 Chapter 3 Attitude Estimation in Smartphone 26 3.1 Adaptive Attitude Estimation in Smartphone 26 3.1.1 Indirect Kalman filter-based attitude estimation 26 3.1.2 Conventional attitude estimation algorithms 29 3.1.3 Adaptive attitude estimation using ellipsoidal methods 30 3.2 Experimental Results 36 3.2.1 Simulation 36 3.2.2 Rate table experiment 44 3.2.3 Handheld rotation experiment 46 3.2.4 Magnetic disturbance experiment 49 3.3 Summary 53 Chapter 4 Pedestrian Dead Reckoning in Multiple Poses of a Smartphone 54 4.1 System Overview 55 4.2 Machine Learning-based Pose Classification 56 4.2.1 Training dataset 57 4.2.2 Feature extraction and selection 58 4.2.3 Pose classification result using supervised learning in PDR 62 4.3 Fusion of the Integration and Parametric Approaches in PDR 65 4.3.1 System model 67 4.3.2 Measurement model 67 4.3.3 Mode selection 74 4.3.4 Observability analysis 76 4.4 Experimental Results 82 4.4.1 AHRS results 82 4.4.2 PCA results 84 4.4.3 IA-PA results 88 4.5 Summary 100 Chapter 5 Conclusions 103 5.1 Summary of the Contributions 103 5.2 Future Works 105 ๊ตญ๋ฌธ์ดˆ๋ก 125 Acknowledgements 127Docto

    Context Awareness for Navigation Applications

    Get PDF
    This thesis examines the topic of context awareness for navigation applications and asks the question, โ€œWhat are the benefits and constraints of introducing context awareness in navigation?โ€ Context awareness can be defined as a computerโ€™s ability to understand the situation or context in which it is operating. In particular, we are interested in how context awareness can be used to understand the navigation needs of people using mobile computers, such as smartphones, but context awareness can also benefit other types of navigation users, such as maritime navigators. There are countless other potential applications of context awareness, but this thesis focuses on applications related to navigation. For example, if a smartphone-based navigation system can understand when a user is walking, driving a car, or riding a train, then it can adapt its navigation algorithms to improve positioning performance. We argue that the primary set of tools available for generating context awareness is machine learning. Machine learning is, in fact, a collection of many different algorithms and techniques for developing โ€œcomputer systems that automatically improve their performance through experienceโ€ [1]. This thesis examines systematically the ability of existing algorithms from machine learning to endow computing systems with context awareness. Specifically, we apply machine learning techniques to tackle three different tasks related to context awareness and having applications in the field of navigation: (1) to recognize the activity of a smartphone user in an indoor office environment, (2) to recognize the mode of motion that a smartphone user is undergoing outdoors, and (3) to determine the optimal path of a ship traveling through ice-covered waters. The diversity of these tasks was chosen intentionally to demonstrate the breadth of problems encompassed by the topic of context awareness. During the course of studying context awareness, we adopted two conceptual โ€œframeworks,โ€ which we find useful for the purpose of solidifying the abstract concepts of context and context awareness. The first such framework is based strongly on the writings of a rhetorician from Hellenistic Greece, Hermagoras of Temnos, who defined seven elements of โ€œcircumstanceโ€. We adopt these seven elements to describe contextual information. The second framework, which we dub the โ€œcontext pyramidโ€ describes the processing of raw sensor data into contextual information in terms of six different levels. At the top of the pyramid is โ€œrich contextโ€, where the information is expressed in prose, and the goal for the computer is to mimic the way that a human would describe a situation. We are still a long way off from computers being able to match a humanโ€™s ability to understand and describe context, but this thesis improves the state-of-the-art in context awareness for navigation applications. For some particular tasks, machine learning has succeeded in outperforming humans, and in the future there are likely to be tasks in navigation where computers outperform humans. One example might be the route optimization task described above. This is an example of a task where many different types of information must be fused in non-obvious ways, and it may be that computer algorithms can find better routes through ice-covered waters than even well-trained human navigators. This thesis provides only preliminary evidence of this possibility, and future work is needed to further develop the techniques outlined here. The same can be said of the other two navigation-related tasks examined in this thesis
    • โ€ฆ
    corecore