3,235 research outputs found

    Inducing the cosmological constant from five-dimensional Weyl space

    Full text link
    We investigate the possibility of inducing the cosmological constant from extra dimensions by embedding our four-dimensional Riemannian space-time into a five-dimensional Weyl integrable space. Following approach of the induced matter theory we show that when we go down from five to four dimensions, the Weyl field may contribute both to the induced energy-tensor as well as to the cosmological constant, or more generally, it may generate a time-dependent cosmological parameter. As an application, we construct a simple cosmological model which has some interesting properties.Comment: 7 page

    On the embedding of spacetime in five-dimensional Weyl spaces

    Full text link
    We revisit Weyl geometry in the context of recent higher-dimensional theories of spacetime. After introducing the Weyl theory in a modern geometrical language we present some results that represent extensions of Riemannian theorems. We consider the theory of local embeddings and submanifolds in the context of Weyl geometries and show how a Riemannian spacetime may be locally and isometrically embedded in a Weyl bulk. We discuss the problem of classical confinement and the stability of motion of particles and photons in the neighbourhood of branes for the case when the Weyl bulk has the geometry of a warped product space. We show how the confinement and stability properties of geodesics near the brane may be affected by the Weyl field. We construct a classical analogue of quantum confinement inspired in theoretical-field models by considering a Weyl scalar field which depends only on the extra coordinate.Comment: 16 pages, new title and references adde

    FY 2019 Financial Statements Report

    Get PDF
    FY 2019 Financial Statements Repor

    FY 2020 Financial Statements Report

    Get PDF
    FY 2020 Financial Statements Repor

    Compactification of gauge theories and the gauge invariance of massive modes

    Get PDF
    We study the gauge invariance of the massive modes in the compactification of gauge theories from D=5 to D=4. We deal with Abelian gauge theories of rank one and two, and with non-Abelian ones of rank one. We show that St\"uckelberg fields naturally appear in the compactification mechanism, contrarily to what usually occurs in literature where they are introduced by hand, as a trick, to render gauge invariance for massive theories. We also show that in the non-Abelian case they appear in a very different way when compared with their usual implementation in the non-Abelian Proca model.Comment: 5 pages, Revtex (multicol), minor correction

    Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics

    Full text link
    A fluid analog of the information flux in the phase-space associated to purity and von Neumann entropy are identified in the Weyl-Wigner formalism of quantum mechanics. Once constrained by symmetry and positiveness, the encountered continuity equations provide novel quantifiers for non-classicality (non-Liouvillian fluidity) given in terms of quantum decoherence, purity and von Neumann entropy fluxes. Through definitions in the Weyl-Wigner formalism, one can identify the quantum fluctuations that distort the classical-quantum coincidence regime, and the corresponding quantum information profile, whenever some bounded x−px-p volume of the phase-space is specified. The dynamics of anharmonic systems is investigated in order to illustrate such a novel paradigm for describing quantumness and classicality through the flux of quantum information in the phase-space.Comment: 11 pages, 1 figur
    • …
    corecore