168 research outputs found

    Dimensionality Reduction of very large document collections by Semantic Mapping

    Get PDF
    This paper describes improving in Semantic Mapping, a feature extraction method useful to dimensionality reduction of vectors representing documents of large text collections. This method may be viewed as a specialization of the Random Mapping, method proposed in WEBSOM project. Semantic Mapping, Random Mapping and Principal Component Analysis (PCA) are applied to categorization of document collections using Self-Organizing Maps (SOM). Semantic Mapping generated document representation as good as PCA and much better than Random Mapping

    Text mining with the WEBSOM

    Get PDF
    The emerging field of text mining applies methods from data mining and exploratory data analysis to analyzing text collections and to conveying information to the user in an intuitive manner. Visual, map-like displays provide a powerful and fast medium for portraying information about large collections of text. Relationships between text items and collections, such as similarity, clusters, gaps and outliers can be communicated naturally using spatial relationships, shading, and colors. In the WEBSOM method the self-organizing map (SOM) algorithm is used to automatically organize very large and high-dimensional collections of text documents onto two-dimensional map displays. The map forms a document landscape where similar documents appear close to each other at points of the regular map grid. The landscape can be labeled with automatically identified descriptive words that convey properties of each area and also act as landmarks during exploration. With the help of an HTML-based interactive tool the ordered landscape can be used in browsing the document collection and in performing searches on the map. An organized map offers an overview of an unknown document collection helping the user in familiarizing herself with the domain. Map displays that are already familiar can be used as visual frames of reference for conveying properties of unknown text items. Static, thematically arranged document landscapes provide meaningful backgrounds for dynamic visualizations of for example time-related properties of the data. Search results can be visualized in the context of related documents. Experiments on document collections of various sizes, text types, and languages show that the WEBSOM method is scalable and generally applicable. Preliminary results in a text retrieval experiment indicate that even when the additional value provided by the visualization is disregarded the document maps perform at least comparably with more conventional retrieval methods.reviewe

    Dimensionality Reduction of very large document collections by Semantic Mapping

    Get PDF
    This paper describes improving in Semantic Mapping, a feature extraction method useful to dimensionality reduction of vectors representing documents of large text collections. This method may be viewed as a specialization of the Random Mapping, method proposed in WEBSOM project. Semantic Mapping, Random Mapping and Principal Component Analysis (PCA) are applied to categorization of document collections using Self-Organizing Maps (SOM). Semantic Mapping generated document representation as good as PCA and much better than Random Mapping

    Information maps: tools for document exploration

    Get PDF

    Towards improving WEBSOM with multi-word expressions

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaLarge quantities of free-text documents are usually rich in information and covers several topics. However, since their dimension is very large, searching and filtering data is an exhaustive task. A large text collection covers a set of topics where each topic is affiliated to a group of documents. This thesis presents a method for building a document map about the core contents covered in the collection. WEBSOM is an approach that combines document encoding methods and Self-Organising Maps (SOM) to generate a document map. However, this methodology has a weakness in the document encoding method because it uses single words to characterise documents. Single words tend to be ambiguous and semantically vague, so some documents can be incorrectly related. This thesis proposes a new document encoding method to improve the WEBSOM approach by using multi word expressions (MWEs) to describe documents. Previous research and ongoing experiments encourage us to use MWEs to characterise documents because these are semantically more accurate than single words and more descriptive

    Evaluation of Linguistic Features for Word Sense Disambiguation with Self-Organized Document Maps

    Get PDF
    Word sense disambiguation automatically determines the appropriate senses of a word in context. We have previously shown that self-organized document maps have properties similar to a large-scale semantic structure that is useful for word sense disambiguation. This work evaluates the impact of different linguistic features on self-organized document maps for word sense disambiguation. The features evaluated are various qualitative features, e.g. part-of-speech and syntactic labels, and quantitative features, e.g. cut-off levels for word frequency. It is shown that linguistic features help make contextual information explicit. If the training corpus is large even contextually weak features, such as base forms, will act in concert to produce sense distinctions in a statistically significant way. However, the most important features are syntactic dependency relations and base forms annotated with part of speech or syntactic labels. We achieve 62.9%±0.73% correct results on the fine grained lexical task of the English SENSEVAL-2 data. On the 96.7% of the test cases which need no back-off to the most frequent sense we achieve 65.7% correct results.Peer reviewe

    Web Mining for Modelling Climate Effects on Wine Quality

    Get PDF

    Word Sense Disambiguation with THESSOM

    Get PDF
    Word sense disambiguation automatically determines the appropriate senses of a word in context. We have previously shown that self-organized document maps have properties similar to a large-scale semantic structure that is useful for word sense disambiguation. In this article we formalize THESSOM, which is an algorithm for word sense disambiguation using selforganized document maps created with WEBSOM. The algorithm is tested on the SENSEVAL-2 benchmark data and shown to be on a par with the top three contenders of the SENSEVAL-2 competition. We also show that the performance of the algorithm improves when using more advanced linguistic features for creating the WEBSOM maps.Peer reviewe

    Classifying Amharic News Text Using Self-Organizing Maps

    Get PDF
    The paper addresses using artificial neural networks for classification of Amharic news items. Amharic is the language for countrywide communication in Ethiopia and has its own writing system containing extensive systematic redundancy. It is quite dialectally diversified and probably representative of the languages of a continent that so far has received little attention within the language processing field. The experiments investigated document clustering around user queries using Self-Organizing Maps, an unsupervised learning neural network strategy. The best ANN model showed a precision of 60.0% when trying to cluster unseen data, and a 69.5% precision when trying to classify it

    Associative conceptual space-based information retrieval systems

    Get PDF
    In this `Information Era' with the availability of large collections of books, articles, journals, CD-ROMs, video films and so on, there exists an increasing need for intelligent information retrieval systems that enable users to find the information desired easily. Many attempts have been made to construct such retrieval systems, including the electronic ones used in libraries and including the search engines for the World Wide Web. In many cases, however, the so-called `precision' and `recall' of these systems leave much to be desired. In this paper, a new AI-based retrieval system is proposed, inspired by, among other things, the WEBSOM-algorithm. However, contrary to that approach where domain knowledge is extracted from the full text of all books, we propose a system where certain specific meta-information is automatically assembled using only the index of every document. This knowledge extraction process results into a new type of concept space, the so-called Associative Conceptual Space where the `concepts' as found in all documents are clustered using a Hebbian-type of learning algorithm. Then, each document can be characterised by comparing the concepts as occurring in it to those present in the associative conceptual space. Applying these characterisations, all documents can be clustered such that semantically similar documents lie close together on a Self-Organising Map. This map can easily be inspected by its user
    • …
    corecore