6,806 research outputs found

    Looking for B→Xsℓ+ℓ−B\rightarrow X_s \ell^+\ell^- in non-minimal Universal Extra Dimensional model

    Get PDF
    Non-vanishing boundary localised terms significantly modify the mass spectrum and various interactions among the Kaluza-Klein excited states of 5-Dimensional Universal Extra Dimensional scenario. In this scenario we compute the contributions of Kaluza-Klein excitations of gauge bosons and third generation quarks for the decay process B→Xsℓ+ℓ−B\rightarrow X_s\ell^+\ell^- incorporating next-to-leading order QCD corrections. We estimate branching ratio as well as Forward Backward asymmetry associated with this decay process. Considering the constraints from some other b→sb \to s observables and electroweak precision data we show that significant amount of parameter space of this scenario has been able to explain the observed experimental data for this decay process. From our analysis we put lower limit on the size of the extra dimension by comparing our theoretical prediction for branching ratio with the corresponding experimental data. Depending on the values of free parameters of the present scenario, lower limit on the inverse of the radius of compactification (R−1R^{-1}) can be as high as ≥760\geq 760 GeV. {Even this value could slightly be higher if we project the upcoming measurement by Belle II experiment.} Unfortunately, the Forward Backward asymmetry of this decay process would not provide any significant limit on R−1R^{-1} in the present model.Comment: 47 pages, 6 Figures, 3 Tables, typos corrected, references added, remarks added, version accepted in Physical Review

    Representations of Time Coordinates in FITS

    Full text link
    In a series of three previous papers, formulation and specifics of the representation of World Coordinate Transformations in FITS data have been presented. This fourth paper deals with encoding time. Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Employing the well--established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.Comment: FITS WCS Paper IV: Time. 27 pages, 11 table

    Localization to Enhance Security and Services in Wi-Fi Networks under Privacy Constraints

    Get PDF
    Developments of seamless mobile services are faced with two broad challenges, systems security and user privacy - access to wireless systems is highly insecure due to the lack of physical boundaries and, secondly, location based services (LBS) could be used to extract highly sensitive user information. In this paper, we describe our work on developing systems which exploit location information to enhance security and services under privacy constraints. We describe two complimentary methods which we have developed to track node location information within production University Campus Networks comprising of large numbers of users. The location data is used to enhance security and services. Specifically, we describe a method for creating geographic firewalls which allows us to restrict and enhance services to individual users within a specific containment area regardless of physical association. We also report our work on LBS development to provide visualization of spatio-temporal node distribution under privacy considerations

    Construction of a Pragmatic Base Line for Journal Classifications and Maps Based on Aggregated Journal-Journal Citation Relations

    Full text link
    A number of journal classification systems have been developed in bibliometrics since the launch of the Citation Indices by the Institute of Scientific Information (ISI) in the 1960s. These systems are used to normalize citation counts with respect to field-specific citation patterns. The best known system is the so-called "Web-of-Science Subject Categories" (WCs). In other systems papers are classified by algorithmic solutions. Using the Journal Citation Reports 2014 of the Science Citation Index and the Social Science Citation Index (n of journals = 11,149), we examine options for developing a new system based on journal classifications into subject categories using aggregated journal-journal citation data. Combining routines in VOSviewer and Pajek, a tree-like classification is developed. At each level one can generate a map of science for all the journals subsumed under a category. Nine major fields are distinguished at the top level. Further decomposition of the social sciences is pursued for the sake of example with a focus on journals in information science (LIS) and science studies (STS). The new classification system improves on alternative options by avoiding the problem of randomness in each run that has made algorithmic solutions hitherto irreproducible. Limitations of the new system are discussed (e.g. the classification of multi-disciplinary journals). The system's usefulness for field-normalization in bibliometrics should be explored in future studies.Comment: accepted for publication in the Journal of Informetrics, 20 July 201

    Geometric flows in Horava-Lifshitz gravity

    Get PDF
    We consider instanton solutions of Euclidean Horava-Lifshitz gravity in four dimensions satisfying the detailed balance condition. They are described by geometric flows in three dimensions driven by certain combinations of the Cotton and Ricci tensors as well as the cosmological-constant term. The deformation curvature terms can have competing behavior leading to a variety of fixed points. The instantons interpolate between any two fixed points, which are vacua of topologically massive gravity with Lambda > 0, and their action is finite. Special emphasis is placed on configurations with SU(2) isometry associated with homogeneous but generally non-isotropic Bianchi IX model geometries. In this case, the combined Ricci-Cotton flow reduces to an autonomous system of ordinary differential equations whose properties are studied in detail for different couplings. The occurrence and stability of isotropic and anisotropic fixed points are investigated analytically and some exact solutions are obtained. The corresponding instantons are classified and they are all globally R x S^3 and complete spaces. Generalizations to higher-dimensional gravities are also briefly discussed.Comment: 67 pages, 16 figures; more solutions found, 1 extra figure, 1 more reference added in v2; minor typos corrected in v3 (to appear in JHEP); an acknowledgement added in v

    Lower Mekong Portfolio: Interim Evaluation

    Get PDF
    This report summarizes a portfolio evaluation of the MacArthur Foundation's conservation investments in the Lower Mekong region since 2011. It is explicitly a portfolio-level evaluation, focusing on common themes rather than individual grants. The evaluation involved understanding the portfolio context through reviewing relevant documents and speaking with donor partners; gathering data from MacArthur grantees; calibrating initial evaluation findings through consultations with independent regional experts and donor partner grantees; improving future evaluation ability by cooperating with NatureServe to improve the Lower Mekong Dashboard; and presenting results in this evaluation report and to MacArthur directly
    • …
    corecore