68 research outputs found

    WCET-Aware Scratchpad Memory Management for Hard Real-Time Systems

    Get PDF
    abstract: Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have a large impact on the worst-case performance due to expensive off- chip memory accesses involved in cache miss handling. In this regard, software-controlled scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a raw SRAM, controlled only by executing data movement instructions explicitly at runtime, and such explicit control facilitates static analyses to obtain safe and tight upper bounds of WCETs. SPM management techniques, used in compilers targeting an SPM-based processor, determine how to use a given SPM space by deciding where to insert data movement instructions and what operations to perform at those program locations. This dissertation presents several management techniques for program code and stack data, which aim to optimize the WCETs of a given program. The proposed code management techniques include optimal allocation algorithms and a polynomial-time heuristic for allocating functions to the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for splitting functions into smaller partitions. The proposed stack data management technique, on the other hand, finds an optimal set of program locations to evict and restore stack frames to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evaluation, the WCETs of various benchmarks including real-world automotive applications are statically calculated for SPMs and caches in several different memory configurations.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Data cache organization for accurate timing analysis

    Get PDF

    An extensible framework for multicore response time analysis

    Get PDF
    In this paper, we introduce a multicore response time analysis (MRTA) framework, which decouples response time analysis from a reliance on context independent WCET values. Instead, the analysis formulates response times directly from the demands placed on different hardware resources. The MRTA framework is extensible to different multicore architectures, with a variety of arbitration policies for the common interconnects, and different types and arrangements of local memory. We instantiate the framework for single level local data and instruction memories (cache or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin, FIFO, Fixed-Priority, Processor-Priority, and TDMA, and account for DRAM refreshes. The MRTA framework provides a general approach to timing verification for multicore systems that is parametric in the hardware configuration and so can be used at the architectural design stage to compare the guaranteed levels of real-time performance that can be obtained with different hardware configurations. We use the framework in this way to evaluate the performance of multicore systems with a variety of different architectural components and policies. These results are then used to compose a predictable architecture, which is compared against a reference architecture designed for good average-case behaviour. This comparison shows that the predictable architecture has substantially better guaranteed real-time performance, with the precision of the analysis verified using cycle-accurate simulation

    Time-predictable Stack Caching

    Get PDF

    Exploring Hybrid SPM-Cache Architectures to Improve Performance and Energy Efficiency for Real-time Computing

    Get PDF
    Real-time computing is not just fast computing but time-predictable computing. Many tasks in safety-critical embedded real-time systems have hard real-time characteristics. Failure to meet deadlines may result in the loss of life or in large damages. Known of Worst Case Execution Time (WCET) is important for reliability or correct functional behavior of the system. As multi-core processors are increasingly adopted in industry, it has become a great challenge to accurately bound the worst-case execution time (WCET) for real-time systems running on multi-core chips. This is particularly true because of the inter-thread interferences in accessing shared resources on multi-cores, such as shared L2 caches, which can significantly affect the performance but are very difficult to be estimate statically. We propose an approach to analyzing Worst Case Execution Time (WCET) for multi-core processors with shared L2 instruction caches by using a model checking based method. Our experiments indicate that compared to the static analysis technique based on extended ILP (Integer Linear Programming), our approach improves the tightness of WCET estimation more than 31.1% for the benchmarks we studied. However, due to the inherent complexity of multi-core timing analysis and the state explosion problem, the model checking based approach currently can only work with small real-time kernels for dual-core processors. At the same time, improving the average-case performance and energy efficiency has also been important for real-time systems. Recently, Hybrid SPM-Cache (HSC) architectures by combining caches and Scratch-Pad Memories (SPMs) have been increasingly used in commercial processors and research prototypes. Our research explores HSC architectures for real-time systems to reconcile time predictability, performance, and energy consumption. We study the energy dissipation of a number of hybrid on-chip memory architectures by combining both caches and Scratch-Pad Memories (SPM) without increasing the total on-chip memory size. Our experimental results indicate that with the equivalent total on-chip memory size, several hybrid SPM-Cache architectures are more energy-efficient than either pure software controlled SPMs or pure hardware-controlled caches. In particular, using the hybrid SPM-cache to store both instructions and data can achieve the best energy efficiency. However, the SPM allocation for the HSC architecture must be aware of the cache to harness the full potential of the HSC architecture. First, we propose and evaluate four SPM allocation strategies to reduce WCET for hybrid SPM-Caches with different complexities. These algorithms differ by whether or not they can cooperate with the cache or be aware of the WCET. Our evaluation shows that the cache aware and WCET-oriented SPM allocation can maximally reduce the WCET with minimum or even positive impact on the average-case execution time (ACET). Moreover, we explore four SPM allocation algorithms to maximize performance on the HSC architecture, including three heuristic-based algorithms, and an optimal algorithm based on model checking. Our experiments indicate that the Greedy Stack Distance based Allocation (GSDA) can run efficiently while achieving performance either the same as or close to the optimal results got by the Optimal Stack Distance based Allocation (OSDA). Last but not the least, we extend the two stack distance based allocation algorithms to GSDA-E and OSDA-E to minimize the energy consumption of the HSC architecture. Our experimental results show that the GSDA-E can also reduce the energy either the same as or close to the optimal results attained by the OSDA-E, while achieving performance close to the OSDA and GSDA

    Automated Compilation Framework for Scratchpad-based Real-Time Systems

    Get PDF
    ScratchPad Memory (SPM) is highly adopted in real-time systems as it exhibits a predictable behaviour. SPM is software-managed by explicitly inserting instructions to move code and data transfers between the SPM and the main memory. However, it is a tedious job to decide how to manage the SPM and to manually modify the code to insert memory transfers. Hence, an automated compilation tool is essential to efficiently utilize the SPM. Another key problem with SPM is the latency suffered by the system due to memory transfers. Hiding this latency is important for high-performance systems. In this thesis, we address the problems of managing SPM and reducing the impact of memory latency. To realize the automation of our work, we develop a compilation framework based on the LLVM compiler to analyze and transform the program code. We exploit our framework to improve the performance of the execution of single and multi-tasks in real-time systems. For the single task execution, Worst-Case Execution Time (WCET) is of great importance to assure correct and safe behaviour of the system. So, we propose a WCET-driven allocation technique for data SPM that employs software prefetching to efficiently manage the SPM and to overlap the memory transfer and the task execution in a predictable way. On the other hand, multi-tasking requires the system to be schedulable such that all the tasks can meet their timing requirements. However, executing multiple tasks on a multi-processor platform suffers from the contention of the accesses to the shared main memory. To avoid the contention, several scheduling techniques adopted the 3-phase execution model which executes the task as a sequence of memory and computation phases. This provides the means to avoid the contention as well as to hide the memory latency by using a Direct Memory Access (DMA) engine. Executing memory transfers using the DMA allows overlapping the memory transfers with the computations on the processor. Using the 3-phase model in systems with limited sizes of local SPM may necessitate a segmentation of the task. Automating the segmentation process is necessary especially for systems with large task sets. Hence, we propose a set of efficient segmentation algorithms that follow the 3-phase execution model. The application of these algorithms shows a significant improvement in the system schedulability. For our segmentation algorithms to be more applicable, we extend the 3-phase model to allow programs with multiple paths represented as conditional Directed Acyclic Graphs (DAGs), unlike the previous works that targeted sequential programs. We also introduce a multi-steaming model to exploit the benefits of prefetching by overlapping the memory and computation phases of the same task, which was not allowed in the previous approaches. By combining the automated compilation with the proposed algorithms, we are able to achieve our goal to efficiently manage data SPM in real-time systems

    Memory Optimizations for Time-Predictable Embedded Software

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The potential of programmable logic in the middle: cache bleaching

    Full text link
    Consolidating hard real-time systems onto modern multi-core Systems-on-Chip (SoC) is an open challenge. The extensive sharing of hardware resources at the memory hierarchy raises important unpredictability concerns. The problem is exacerbated as more computationally demanding workload is expected to be handled with real-time guarantees in next-generation Cyber-Physical Systems (CPS). A large body of works has approached the problem by proposing novel hardware re-designs, and by proposing software-only solutions to mitigate performance interference. Strong from the observation that unpredictability arises from a lack of fine-grained control over the behavior of shared hardware components, we outline a promising new resource management approach. We demonstrate that it is possible to introduce Programmable Logic In-the-Middle (PLIM) between a traditional multi-core processor and main memory. This provides the unique capability of manipulating individual memory transactions. We propose a proof-of-concept system implementation of PLIM modules on a commercial multi-core SoC. The PLIM approach is then leveraged to solve long-standing issues with cache coloring. Thanks to PLIM, colored sparse addresses can be re-compacted in main memory. This is the base principle behind the technique we call Cache Bleaching. We evaluate our design on real applications and propose hypervisor-level adaptations to showcase the potential of the PLIM approach.Accepted manuscrip

    Application-aware Performance Optimization for Software Managed Manycore Architectures

    Get PDF
    abstract: One of the main goals of computer architecture design is to improve performance without much increase in the power consumption. It cannot be achieved by adding increasingly complex intelligent schemes in the hardware, since they will become increasingly less power-efficient. Therefore, parallelism comes up as the solution. In fact, the irrevocable trend of computer design in near future is still to keep increasing the number of cores while reducing the operating frequency. However, it is not easy to scale number of cores. One important challenge is that existing cores consume too much power. Another challenge is that cache-based memory hierarchy poses a serious limitation due to the rapidly increasing demand of area and power for coherence maintenance. In this dissertation, opportunities to resolve the aforementioned issues were explored in two aspects. Firstly, the possibility of removing hardware cache altogether, and replacing it with scratchpad memory with software management was explored. Scratchpad memory consumes much less power than caches. However, as data management logic is completely shifted to Software, how to reduce software overhead is challenging. This thesis presents techniques to manage scratchpad memory judiciously by exploiting application semantics and knowledge of data access patterns, thereby enabling optimization of data movement across the memory hierarchy. Experimental results show that the optimization was able to reduce stack data management overhead by 13X, produce better code mapping in more than 80% of the case, and improve performance by 83% in heap management. Secondly, the possibility of using software branch hinting to replace hardware branch prediction to completely eliminate power consumption on corresponding hardware components was explored. As branch predictor is removed from hardware, software logic is responsible for reducing branch penalty. Techniques to minimize the branch penalty by optimizing branch hint placement were proposed, which can reduce branch penalty by 35.4% over the state-of-the-art.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore