5,676 research outputs found

    Fine-Grain Iterative Compilation for WCET Estimation

    Get PDF
    Compiler optimizations, although reducing the execution times of programs, raise issues in static WCET estimation techniques and tools. Flow facts, such as loop bounds, may not be automatically found by static WCET analysis tools after aggressive code optimizations. In this paper, we explore the use of iterative compilation (WCET-directed program optimization to explore the optimization space), with the objective to (i) allow flow facts to be automatically found and (ii) select optimizations that result in the lowest WCET estimates. We also explore to which extent code outlining helps, by allowing the selection of different optimization options for different code snippets of the application

    Fully automatic worst-case execution time analysis for MATLAB/Simulink models

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In today's technical world (e.g., in the automotive industry), more and more purely mechanical components get replaced by electro-mechanical ones. Thus the size and complexity of embedded systems steadily increases. To cope with this development, comfortable software engineering tools are being developed that allow a more functionality-oriented development of applications. The paper demonstrates how worst-case execution time (WCET) analysis is integrated into such a high-level application design and simulation tool MATLAB/Simulink-thus providing a higher-level interface to WCET analysis. The MATLAB/Simulink extensions compute and display worst-case timing data for all blocks of a MATLAB/Simulink simulation, which gives the developer of an application valuable feedback about the correct timing of the application being developed. The solution facilitates a fully-automated WCET analysis, i.e., in contrast to existing approaches the programmer does not have to provide path information

    TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses

    Get PDF
    Implementation-based benchmarking of timing and schedulability analyses requires system code that can be executed on real hardware and has defined properties, for example, known worst-case execution times (WCETs) of tasks. Traditional approaches for creating benchmarks with such characteristics often result in implementations that do not resemble real-world systems, either due to work only being simulated by means of busy waiting, or because tasks have no control-flow dependencies between each other. In this paper, we address this problem with TASKers, a generator that constructs realistic benchmark systems with predefined properties. To achieve this, TASKers composes patterns of real-world programs to generate tasks that produce known outputs and exhibit preconfigured WCETs when being executed with certain inputs. Using this knowledge during the generation process, TASKers is able to specifically introduce inter-task control-flow dependencies by mapping the output of one task to the input of another

    Improving performance guarantees in wormhole mesh NoC designs

    Get PDF
    Wormhole-based mesh Networks-on-Chip (wNoC) are deployed in high-performance many-core processors due to their physical scalability and low-cost. Delivering tight and time composable Worst-Case Execution Time (WCET) estimates for applications as needed in safety-critical real-time embedded systems is challenged by wNoCs due to their distributed nature. We propose a bandwidth control mechanism for wNoCs that enables the computation of tight time-composable WCET estimates with low average performance degradation and high scalability. Our evaluation with the EEMBC automotive suite and an industrial real-time parallel avionics application confirms so.The research leading to these results is funded by the European Union Seventh Framework Programme under grant agreement no. 287519 (parMERASA) and by the Ministry of Science and Technology of Spain under contract TIN2012-34557. Milos Panic is funded by the Spanish Ministry of Education under the FPU grant FPU12/05966. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella is partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Random Modulo: A new processor cache design for real-time critical systems

    Get PDF
    Cache memories have a huge impact on software's worst-case execution time (WCET). While enabling the seamless use of caches is key to provide the increasing levels of (guaranteed) performance required by automotive software, caches complicate timing analysis. In the context of Measurement-Based Probabilistic Timing Analysis (MBPTA) - a promising technique to ease timing analyis of complex hardware - we propose Random Modulo (RM), a new cache design that provides the probabilistic behavior required by MBPTA and with the following advantages over existing MBPTA-compliant cache designs: (i) an outstanding reduction in WCET estimates, (ii) lower latency and area overhead, and (iii) competitive average performance w.r.t conventional caches.Peer ReviewedPostprint (author's final draft
    • …
    corecore